
Tensor Reed-Muller Codes: Achieving Capacity with Quasilinear

Decoding Time

Emmanuel Abbe∗ Colin Sandon∗ Oscar Sprumont∗†

∗EPFL
†University of Washington

Abstract

Define the codewords of the Tensor Reed-Muller code TRM(r1,m1; r2,m2; . . . ; rt,mt) to be

the evaluation vectors of all multivariate polynomials in the variables {xij}j=1,...mi

i=1,...,t with degree at

most ri in the variables xi1, xi2, . . . , ximi
. The generator matrix of TRM(r1,m1; . . . ; rt,mt) is thus

the tensor product of the generator matrices of the Reed-Muller codes RM(r1,m1), . . . ,RM(rt,mt).
We show that for any constant rate R below capacity, one can construct a Tensor Reed-Muller

code TRM(r1,m1; . . . ; rt,mt) of rate R that is decodable in quasilinear time. For any blocklength
n, we provide two constructions of such codes:

• Our first construction (with t = 3) has error probability n−ω(logn) and decoding time
O(n log log n).

• Our second construction, for any t ≥ 4, has error probability 2−n
1
2
− 1

2(t−2)
−o(1)

and decoding
time O(n logn).

One of our main tools is a polynomial-time algorithm for decoding an arbitrary tensor code

C = C1 ⊗ . . .⊗Ct from
dmin(C)

2max{dmin(C1),...,dmin(Ct)} − 1 adversarial errors. Crucially, this algorithm

does not require the codes C1, . . . , Ct to themselves be decodable in polynomial time.

1 Introduction

Reed-Muller (RM) codes, which were introduced by Reed and Muller in 1954 [Ree54, Mul54], are
one of the simplest and most widely used families of codes. Their codewords can be viewed as
the evaluation vectors (over Fm

2 ) of all polynomials of degree at most r in m variables. Although
RM codes were recently shown to achieve capacity on the erasure channel [KKM+17] as well as
all BMS channels for both the bit error [RP24] and the block error [AS23], we do not know of
any polynomial-time algorithm for decoding them in the constant-rate regime. In this paper, we
introduce a variant of RM codes called Tensor Reed-Muller codes, where the m variables are split
into groups and the degree requirement is applied to each group separately1. We prove that Tensor
Reed-Muller codes achieve capacity efficiently:

Theorem 1. Consider any noise probability p > 0 and any rate R < 1−h(p). Then for any integers
n ∈ N and t ≥ 4, we can construct a Tensor Reed-Muller code TRM(r1,m1; . . . ; rt,mt) of length
n1±o(1) and rate R± o(1) such that:

1. If t = 3, there exists a decoder D for TRM(r1,m1; r2,m2; r3,m3) with worst-case runtime
O(n log logn) and decoding success probability 1− n−ω(logn) under p-noisy errors.

1See Section 2.2 for the formal definition.
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2. If t > 3, there exists a decoder D for TRM(r1,m1; . . . ; rt,mt) with worst-case runtime O(nlog n)

and decoding success probability 1− 2−n
1
2− 1

2(t−2)
−o(1)

under p-noisy errors.

Our analysis makes use of the following result for adversarial errors, which is of independent
interest:

Theorem 2. Consider any integers r1 ≤ m1, . . . , rt ≤ mt and define n = 2m1+...+mt . Then there is
an O(n log n)-time algorithm for decoding the code C := TRM(r1,m1; . . . ; rt,mt) from¢

dmin(C)

2maxi
{
2mi−ri

}•− 1

adversarial errors.

One can modify our algorithm to decode any tensor code C := C1 ⊗ . . .⊗ Ct from†
dmin(C)

2max{dmin(C1),...,dmin(Ct)}

£
− 1 adversarial errors, but in that case the algorithm runs in time

O(n
∑

i ni), for ni the length of code Ci (see Section 4.)

1.1 Previous Work

Reed-Muller codes have in recent years attracted a lot of attention for their decoding performances
under random noise. By bounding their weight distribution appropriately, [ASW15, SS20] first
showed that Reed-Muller codes achieve capacity on the erasure channel (BEC) and the symmetric
channel (BSC) in the regimes where the rate of the code is either very close to 0 or very close
to 1. [KKM+17] then leveraged the double transitivity of their permutation group to show that
Reed-Muller codes of constant rates achieve capacity on the BEC.

[Sam20] combined the results of [KKM+17] with new ℓq−norm inequalities to obtain better
bounds on the weight distributions of doubly transitive codes. This allowed [HSS21] to prove that
Reed-Muller codes of constant rates can decode a constant fraction of random errors, although the
maximum code rate allowed was below the capacity of the channel. The first capacity results were
obtained in [RP24], which proved that for any R ∈ (0, 1), the asymptotic bit error probability of a
rate-R Reed-Muller code vanishes on any memoryless symmetric channel (BMS) whose capacity is
greater than R. That still left open the question of showing that the block error probability vanishes
as well, which was finally proven in [AS23, ASSV24]:

Theorem 3 ([AS23]). Consider any error parameter p ∈ (0, 12) and any rate R < 1− h(p). Then
any sequence of Reed-Muller codes

{
RM(ri,mi)

}
i
of asymptotic rate R satisfies

Pr
z∼p

[
DML(c+ z) = c

]
≥ 1− 2−2Ω(

√
mi)

for every c ∈ RM(ri,mi), where z ∼ p denotes a p-noisy error string and DML denotes the
maximum-likelihood decoder for the code RM(ri,mi).

The line of work described above established that Reed-Muller codes achieve capacity on all BMS
channels. The most natural next challenge is then to understand whether or not they can be decoded
efficiently. Reed provided the first known algorithm in [Ree54], allowing for the correction of half
the minimum distance many adversarial errors. For random errors, efficient algorithms for decoding
RM(r,m) are known in the case where r is constant. The first algorithms [VMS92, Sak05] focused
on the regime where r ∈ {1, 2}, but algorithms for all values of r = O(1) have since been obtained.
They exploit either the recursive structure of Reed-Muller codes [Dum04, DS06, Dum06, YA20] or
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their minimum-weight parity checks [SHP18]. In the regime r = ω(1), the only known algorithm
with proven polynomial runtime is the algorithm of [SSV17], which successfully decodes any error
pattern in RM(m− 2t,m) for which the same erasure pattern can be corrected in RM(m− t,m).

Theorem 4 ([SSV17]). For any integers m and t ≤ m, there exists an O
(
2m · poly(

(m
≤t

)
)
)
- time

decoder D for the code RM(m− 2t,m) with the following property: for every z ∈ {0, 1}2m, if{
x ∈ RM(m− t,m) : zi ≥ xi for all i

}
= {0},

then every c ∈ RM(m− 2t,m) satisfies

D(c+ z) = c.

In particular, there are currently no known polynomial-time algorithms for reliably decoding
Reed-Muller codes of constant rates. In this paper, we leverage the results of [SSV17] to obtain
efficient decoding algorithms for Tensor Reed-Muller codes of constant rates (see Theorem 1).

Our general approach shares some high-level similarities with Forney’s concatenated codes
[For66], as it also involves combining two codes to create a new one. However, tensoring presents
two significant advantages. First, the tensor product of two Reed-Muller codes RM(r1,m1) and
RM(r2,m2) has a simple and intuitive description: its codewords are the evaluation vectors of
all multilinear polynomials in the variables x1, . . . , xm1 , y1, . . . , ym2 with degree at most r1 in the
variables x1, . . . , xm1 and degree at most r2 in the variables y1, . . . , ym2 , and codewords can further
be viewed as tensors (see Section 2). We do not know of a similarly simple description for the
concatenation of RM(r1,m1) and RM(r2,m2). Second, concatenation usually requires the alphabet
of the outer code to be large. One can try to mimic concatenation by arranging the entries of each
codeword of a binary code Cout into groups of size k1 and encoding each group of coordinates using
an inner code Cin of dimension k1, but this can have a significant impact on the minimum distance
of the final code.

1.2 Proof Techniques

There are two regimes in which we currently have efficient decoding algorithms for Reed-Muller
codes:

• Regime 1: when the noise is smaller than 1 − ( m
≤m−t)
2m , one can use the work of [SSV17] to

decode a code RM(m− 2t,m) of length n = 2m.

• Regime 2: when the blocklength of the code is very small, brute-force decoding, which runs in
time O(2n), may have reasonable runtime.

This work combines the two regimes above to obtain an efficient decoder for Tensor Reed-Muller
codes. We take a short code RM(r1,m1) of rate R−o(1) and tensor it with a longer code RM(r2,m2)
of rate 1 − o(1). The codewords of the resulting code TRM(r1,m1; r2,m2) are all the matrices
A ∈ {0, 1}2m2×2m1 such that each row of A is a codeword of RM(r1,m1) and each column of A is
a codeword of RM(r2,m2). To decode our tensor code, we first use the brute-force algorithm to
decode each row of A independently. After this first step, which takes polynomial time as long
as 2m1 ≈ log n, only a o(1) fraction of A’s entries will have been incorrectly decoded. We then
use the high-rate algorithm of [SSV17] to decode each column of A independently. At the end
of this second decoding step, the fraction of incorrectly decoded entries will have dropped below

3



n−ω(logn), allowing us to take a union bound over all coordinates. To further reduce the decoding
error probability, we can take the tensor product of TRM(r1,m1; r2,m2) with an even longer RM
code RM(r3,m3) of rate 1− o(1) and repeat the same argument.

The ideas outlined above, further iterated, would allow us to decode t-Tensor Reed-Muller codes
(for some t) with a decoding failure probability of about 2−n1/4

. To bring this error rate closer to the
distance-optimal 2−Ω(

√
n), we introduce a new algorithm for decoding tensor codes from adversarial

errors. This algorithm works for any tensor code C1 ⊗ . . .⊗ Ct and relies on the fact that erasures
are generally easier to decode than errors.2 First, replace each row that is not a codeword of C1 by
an all-erasures row. Then, go through each column and determine whether or not there is a unique
codeword c ∈ C2 compatible with the (now partially-erased) column. If so, replace the column by c;
otherwise, replace every entry in the column by an erasure symbol. For t > 2, repeat this process
with every additional axis. By adding additional checks that ensure we never return subtensors
that are too far away from the corresponding input, we obtain in Theorem 5 an algorithm for
decoding any arbitrary tensor code C = C1 ⊗ . . .⊗ Ct from

dmin(C)
2maxi{dmin(Ci)} − 1 adversarial errors.

For Reed-Muller codes, this algorithm runs in time O(n log n).
Our final construction combines the ideas of the above two paragraphs: the first two Reed-

Muller codes RM(r1,m1) and RM(r2,m2) are of subpolynomial lengths and taken as in the first
paragraph. As mentioned above, this allows us to bring the error probability down to about
n−ω(logn). The remaining Reed-Muller codes

{
RM(ri,mi)

}
i=3,...,t

all have mi =
logn−m1−m2

t−2 and

ri =
mi+m

3/4
i

2 . By the arguments we outlined in the second paragraph, we can recover any sent

codeword of TRM(r3,m3; . . . ; rt,mt) with fewer than about n
1
2
− 1

2(t−2) errors. But since the first
pass on RM(r1,m1) and RM(r2,m2) brought the error rate down to n−ω(logn), by the Chernoff

bound, the probability that there are more than n
1
2
− 1

2(t−2) errors is bounded by 2−n
1
2− 1

2(t−2)
−o(1)

.

2 Notation and Preliminaries

Throughout this paper, we will use N = {1, 2, 3, . . . } to denote the set of positive integers and log(x)
to denote the logarithm of x in base 2. We define the entropy function h : [0, 1]→ [0, 1] to be

h(x) := −x log(x)− (1− x) log(1− x).

For any positive real number a, we define ⌈a⌉ to be the ceiling of a, i.e. the smallest integer n ∈ N
such that n ≥ a. For any n ∈ N, we define the set [n] := {1, 2, . . . , n}. For any n ∈ N and any
p ∈ [0, 1], we denote by z ∼n p the Boolean random vector of length n whose entries are independent
and identically distributed Bernoulli variables of probability p. When n is clear from context, we
will drop the subscript and write z ∼ p. We will need the following two very standard results (see
e.g. [BLM13] and [BHS80] respectively):

Lemma 1 (The Chernoff bound). Let X1, X2, . . . , Xn be independent random variables taking values
in {0, 1} and define E :=

∑n
i=1 E[Xi]. Then for any α ≥ 1, we have

Pr

[
n∑

i=0

Xi ≥ αE

]
≤
Å
eα−1

αα

ãE
.

2For any linear code C ⊆ {0, 1}n, given a partially-erased codeword of C, one can use the parity-check matrix
to obtain a system of n− dim C linear equations in e ≤ n unknowns, where e is the number of erased coordinates.
This can be solved by Gaussian elimination in time O(n3). For Reed-Muller codes, we improve this decoding time to
O(n logn) whenever the number of erasures is below the minimum distance - see Lemma 3.
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Lemma 2 (The Master theorem). Suppose T (n) denotes the running time of an algorithm on an
input of size n, and suppose T (n) can be expressed recursively as

T (n) ≤ aT
(n
a

)
+O(n)

for some constant a > 0. Then if T (1) = O(1), we have T (n) ≤ O(n log n).

2.1 Reed-Muller Codes

We will denote by RM(r,m) the Reed-Muller code with m variables and degree r. The codewords of
the Reed-Muller code RM(r,m) are the evaluation vectors (over all points in Fm

2 ) of all multivariate
polynomials of degree ≤ r in m variables. We refer the reader to the survey [ASSY23] for a more
thorough exposition to Reed-Muller codes.

2.2 Tensor Reed-Muller Codes

For any choice of Reed-Muller codes RM(r1,m1), RM(r2,m2), . . . ,RM(rt,mt), we define the Ten-
sor Reed-Muller code TRM(r1,m1; r2,m2; . . . ; rt,mt) as follows: Consider m :=

∑
imi variables

{xij}j=1,...mi

i=1,...,t and define the set

S :=
{
S1 ∪ S2 ∪ · · · ∪ St : for all i, Si ⊆ {xi1, . . . , ximi} and |Si| ≤ ri

}
.

Abusing notation, we say that a monomial is in S if the set of its constituent variables is in
S. Then the evaluation vector of a polynomial f(x11, . . . , xtmt) over all points in {0, 1}m is in
TRM(r1,m1; . . . ; rt,mt) if and only if all the monomials of f are in S. We note that the gen-
erator matrix of the code TRM(r1,m1; . . . ; rt,mt) is the tensor product of the generator matri-
ces of the Reed-Muller codes RM(r1,m1), . . . ,RM(rt,mt). We also note that the codewords of
TRM(r1,m1; . . . ; rt,mt) can be seen as the t-dimensional tensors A ∈ {0, 1}2m1×···×2mt satisfying
the condition that for every i ∈ [t], every i-axis vector of A is a codeword of RM(ri,mi).

3 Finally,
we note that the rate of TRM(r1,m1; . . . ; rt,mt) is equal to the product of the rates of the codes{
RM(ri,mi)

}t

i=1
.

3 Helpful Lemmas

In this section, we will prove performance guarantees for two decoding algorithms that will be
used as subroutines throughout this paper. We start with an algorithm for efficiently testing and
correcting Reed-Muller codes from adversarial erasures.

Lemma 3. For any nonnegative integers r ≤ m, there is an O(m2m)-time algorithm which, given
an input string y ∈ {0, 1, ∗}2m with fewer than 2m−r erasure symbols, determines whether or not
there exists a codeword c ∈ RM(r,m) such that yi ∈ {ci, ∗} for all i ∈ [2m]. The algorithm returns
such a codeword c if it exists and an error message otherwise.

Proof. Our decoder is given in Algorithm 1. We first prove by induction on m that it always finds
the desired codeword c ∈ RM(r,m) if such a codeword exists. Note that the base case m = 1 holds
trivially, since Algorithm 1 always succeeds when r = 0 or r = m.

3We say that a vector v ∈ {0, 1}ni is an i-axis vector of a tensor A ∈ {0, 1}n1×...×nt if it is a “row” of A along the
ith axis - formally, if there exist indices {jk ∈ [nk]}k∈[t]\i such that for all s ∈ [ni], we have vs = Aj1,...,ji−1,s,ji+1,...,jt .
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Algorithm 1: Codeword testing and erasure correction for Reed-Muller codes

Input: Two integers 0 ≤ r ≤ m and a vector y ∈ {0, 1, ∗}2m with fewer than
2m−r erasure entries.

Output: A codeword c ∈ RM(r,m) with yi ∈ {ci, ∗} for all i ∈ [2m], if such a c
exists; an error message otherwise.

1 if r = 0 then
2 If there exists b ∈ {0, 1} such that yi ∈ {b, ∗} for all i, output (b, b, . . . , b).

Otherwise, output an error message.
3 end
4 else if r = m then
5 Output y.
6 end
7 else
8 Define y0 := (y1, . . . , y2m−1) and y1 := (y2m−1+1, . . . , y2m) and let

ysum := y0 + y1 (defining ysumi = ∗ whenever either y0i = ∗ or y1i = ∗). Run
Algorithm 1 on input (r− 1,m− 1, ysum) and denote the output you receive by
csum. If csum is an error message, abort and output an error.

9 if y0 contains fewer erasure symbols than y1 then
10 Run Algorithm 1 on input (r,m− 1, y0), denoting the output you receive

by c0. If c0 is an error message, abort and output an error. Otherwise,
define c to be the concatenation c := (c0, c0 + csum). If yi ∈ {ci, ∗} for all
i ∈ [2m], output c; otherwise, output an error.

11 end
12 else
13 Run Algorithm 1 on input (r,m− 1, y1), denoting the output you receive

by c1. If c1 is an error message, abort and output an error. Otherwise,
define c to be the concatenation c := (c1 + csum, c1). If yi ∈ {ci, ∗} for all
i ∈ [2m], output c; otherwise, output an error.

14 end

15 end

For the inductive case, suppose there exists a codeword c ∈ RM(r,m) such that y agrees with c
on all non-erased entries. Let f(x1, . . . , xm) be the unique polynomial whose evaluation vector is c
and express f as

f(x1, . . . , xm) = f0(x2, . . . , xm) + x1 · f1(x2, . . . , xm). (1)

We make the following two observations:

(i) Define c0 ∈ {0, 1}2m−1
to be the vector containing the first half of c’s entries. Then c0 is the

evaluation vector of the polynomial f0(x2, . . . , xm).

(ii) Define c1 ∈ {0, 1}2m−1
to be the vector containing the second half of c’s entries. Then c1 is the

evaluation vector of f0(x2, . . . , xm) + f1(x2, . . . , xm).

Both (i) and (ii) follow immediately from the fact that the indices of c are ordered lexicographically
(and thus an index v ∈ Fm

2 is in the first half if and only if v1 = 0).

6



Now, since y0 := (y1, . . . , y2m) is a corrupted evaluation vector for the polynomial f0 and
y1 := (y2m+1, . . . , y2m) is a corrupted evaluation vector for the polynomial f0 + f1, the vector
ysum := y0 + y1 must be an evaluation vector for f1 corrupted with fewer than 2m−r erasures. By
induction, since f1 has degree ≤ r − 1, running Algorithm 1 on input (r − 1,m− 1, ysum) will then
return the correct evaluation vector csum for the polynomial f1(x2, . . . , xm). (See line 8.)

Furthermore, since y contains fewer than 2m−r erasures, one of y0 or y1 must contain fewer
than 2m−r−1 erasures. Without loss of generality, we assume that y0 contains fewer erasures4. By
induction, running Algorithm 1 on input (r− 1,m, y0) will then return the correct evaluation vector
c0 for the polynomial f0. (See line 10.) Since c1 is the evaluation vector for f0 + f1 and we have
obtained the evaluation vectors c0, csum for f0 and f1, setting c1 = c0 + csum will successfully recover
c1. Thus the algorithm indeed outputs the correct codeword c = (c0, c1). (See line 10.)

We have proven that whenever there exists a (by our theorem’s requirement, unique) codeword
c ∈ RM(r,m) that is consistent with y, our algorithm returns it. Note also that Algorithm 1 never
outputs a codeword c ∈ RM(r,m) that is not consistent with y; this is because before returning
c, the algorithm verifies that yi ∈ {ci, ∗} for all i ∈ [2m] (see lines 10 and 13). Thus Algorithm 1
always succeeds. As for the runtime analysis, we note that at each step, the algorithm spends O(2m)
time performing basic computations and then makes 2 recursive calls on instances of length 2m−1.
By the Master theorem (Lemma 2), the total runtime will thus be O(m2m).

Our second lemma is essentially a special case of the work of [SSV17] (Theorem 4), which we
will use in the following form to bound the running time and error probability of a decoder for
high-rate Reed-Muller codes.

Lemma 4. Consider any integers m > t > 0 and any p ≤ 2−m+ t
2

5 . Then there exists a decoder D̃
for the Reed-Muller code RM(m− t,m) with the following two properties.

1. D̃ runs in time O
(
2m · poly(

( m
≤ t

2

)
)
)
.

2. Under random errors of probability p, D̃ succeeds in decoding any sent codeword c ∈ RM(m−
t,m) with probability

Pr
z∼p

[
D̃(c+ z) = c

]
≥ 1− 2−2t/2 .

Proof. By Theorem 4, it will suffice to show that the Reed-Muller code RM(m− t
2 ,m) can recover

from p-noisy erasures with success probability 1−2−2t/2 . Since the code RM(m− t
2 ,m) has minimum

distance 2t/2, it is enough to prove that for independent Bernoulli variables X1, X2, . . . , X2m with

Bernoulli parameter p ≤ 2−m+ t
2

5 , we have

Pr
[
X1 +X2 + . . . X2m ≥ 2t/2

]
≤ 2−2t/2 .

But this follows immediately from the Chernoff bound (Lemma 1).

4The proof is identical in the other case, with the roles of y0 and y1 reversed.
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4 Decoding Arbitrary Tensor Codes from Adversarial Errors

In this section, we will prove a generalization of Theorem 2, which we state in Theorem 5. For any
code C ⊆ {0, 1}n, define the function fC : {0, 1, ∗}n → {0, 1, ∗}n to be

fC(x) :=

®
c if c ∈ C, xi ∈ {ci, ∗} for all i, and x has fewer than dmin(C) erasures

(∗, . . . , ∗) otherwise.
(2)

The function fC essentially tells us whether or not a partially-erased binary string with fewer than
dmin(C) erasures is consistent with any codeword of C. It can always be computed in time O(n3)
(see Note 2), and its runtime dictates the runtime of our following decoder for adversarial errors.

Theorem 5. Consider any linear codes C1 ⊆ {0, 1}n1 , . . . , Ct ⊆ {0, 1}nt and define n :=
∏t

i=1 ni.
Suppose there exists a function T : N→ N such that T (m) ≥ m for all m ∈ N and such that for all
i ∈ [t], there is a T (ni)-time algorithm for computing the function fCi defined in (2). Then there is

an O
Ä∑t

i=1
n
ni
· T (ni)

ä
-time algorithm for decoding the tensor code C := C1 ⊗ . . .⊗ Ct from¢

dmin(C)

2max
{
dmin(C1), . . . , dmin(Ct)

}•− 1

adversarial errors.

Remark 1. By Note 2, for any linear codes C1, . . . , Ct we can take T (n) = O(n3), which gives us
a runtime of O

(
n
∑

i n
2
i

)
. But for Reed-Muller codes, we can do better: by Lemma 3, we can take

T (n) = O(n logn), which gives a runtime of O
(∑

i n logni

)
= O(n log n).

Remark 2. Note that in Algorithm 2, at each layer i = 2, . . . , t of the decoding process, the i-axis
erasure pattern is the same for all i-axis vectors within the same i-subtensor of A. One could thus
use Gaussian elimination to express the erased entries in this erasure pattern as a linear combination
of the non-erased entries, then go through each i-axis vector of A and correct the erasures accordingly.
If C1 is taken to be the code of maximum length among C1, . . . , Ct, this will give a running time of
O(n

∑
i ni) for decoding the tensor product of any linear codes C1, . . . , Ct of lengths n1, . . . , nt.

Proof. Note that we may assume that each ni is greater than 1, as otherwise C trivially reduces
to a tensor product of t − 1 codes. Our algorithm for the case where each ni is greater than 1
is given in Algorithm 2. We first show by induction that it always outputs either a codeword of
TRM(r1,m1; . . . ; rt,mt) or the all-erasures tensor. The base case t = 1 is trivial. For the case
t > 1, we note that by induction, after the line-5 for loop completes, each (t− 1)-subtensor of A
is either a valid codeword of TRM(r1,m1; . . . ; rt−1,mt−1) or a tensor filled with erasure symbols.
Thus the erasure pattern of each t-axis vector in the line 8-for loop is identical. In particular, if
there is a unique consistent codeword for each of these t-axis vectors, then the erased entries of
each t-axis vector can be expressed as the same linear combination of non-erased coordinates. This
means that the erased (t− 1)-subtensors can be expressed as linear combinations of the non-erased
(t− 1)-subtensors; since the code is linear, the newly recovered subtensors must then be codewords
of TRM(r1,m1; . . . ; rt−1,mt−1). Combining this with the fact that by line 9, each t-axis vector is a
codeword of RM(rt,mt) (otherwise by line 12, we would output an all-erasures tensor), we get that
any Boolean output must indeed be a codeword of TRM(r1,m1; . . . ; rt,mt).

Now that we have proven that our algorithm always outputs either a valid codeword or a tensor
filled with erasures, we turn to showing that the algorithm correctly ouputs the sent codeword as
long as there are fewer than dmin(C)

2max
{
dmin(C1),...,dmin(Ct)

} errors. We again proceed by induction. The
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Algorithm 2: A polynomial-time decoder for arbitrary tensor codes

Input: An n1 × . . .× nt Boolean tensor A.
Output: Either a codeword of the tensor code C1 ⊗ . . .⊗ Ct or an n1 × . . .× nt

tensor filled with erasure symbols.
1 if t = 1 then
2 If A has fewer than dmin(C1) erasures and there is a codeword c ∈ C1 with

Ai ∈ {ci, ∗} for all i ∈ [n1], replace A by c. Otherwise replace every entry in A
by an erasure symbol.

3 end
4 else
5 for i = 1, 2, . . . , nt do
6 Run Algorithm 2 on the n1 × . . .× nt−1 tensor Ai whose entries are given

by Ai
j1...jt−1

= Aj1...jt−1i. Replace the entries {Aj1...jt−1i} of A by the
output entries.

7 end
8 for every t−axis vector v ∈ {0, 1, ∗}nt of A (see definition 3) do
9 If v has fewer than dmin(Ct) erasures and there is a codeword c ∈ Ct with

vi ∈ {ci, ∗} for all i, replace v by c. Otherwise, replace v by (∗, ∗, . . . , ∗).
10 end
11 if the updated tensor A contains erasure symbols or its Hamming distance from

the original input is at least dmin(C1)·...·dmin(Ct)
2 then

12 Replace every entry of A by an erasure symbol.
13 end

14 end
15 Output the updated tensor A.

base case t = 1 is trivial. For the general case, we note that in order for our Algorithm 2 to fail in
decoding a noisy codeword containing fewer than dmin(C1)·...·dmin(Ct)

2 errors, one of the following two
statements must hold:

(i) After we decode all the (t − 1)-dimensional subtensors {Ai}i∈[nt] (see line 6), there is a
non-erasure erroneous entry in at least one of the updated subtensors Ai.

(ii) After we decode all the (t− 1)-dimensional subtensors {Ai}i∈[nt], there are at least dmin(Ct)
values of i ∈ [nt] for which the updated subtensor Ai contains one or more erasures.

Indeed, if neither of these occur, then our line 9 will allow us to recover every entry of A correctly.
We now show that neither point (i) nor point (ii) can occur. Suppose for contradiction that there
exists a subtensor Ai as described in point (i). Note that by line 12, the Hamming distance between

Ai and its corresponding input must be less than dmin(C1)·...·dmin(Ct−1)
2 . Since Ai is a codeword of

C1 × . . .× Ct−1 (we proved in the first paragraph that any output of our algorithm is a codeword)
and since C1 × . . .× Ct−1 has minimum distance dmin(C1) · . . . · dmin(Ct−1), there must have been

at least dmin(C1)·...·dmin(Ct−1)
2 corrupted entries in the ith subtensor to begin with. This contradicts

our theorem’s requirement on the total number of errors.
Suppose instead that there are dmin(Ct) subtensors {Ai1 , . . . , Aidmin(Ct)} satisfying point (ii)

above. Since each of these subtensors is decoded independently, by our inductive hypothesis there

9



must have been at least dmin(Ct) · dmin(C1)·...·dmin(Ct−1)

2max
{
dmin(C1),...,dmin(Ct−1)

} ≥ dmin(C)

2max
{
dmin(C1),...,dmin(Ct)

} errors. But

this again contradicts our theorem’s requirement on the total number of errors.
This concludes the proof of correctness. We now turn to the runtime analysis. DefineR(n1, . . . , nt)

to be the maximal runtime of Algorithm 2 on any code C ′ = C ′
1⊗ . . .⊗C ′

t with C ′
i ⊆ {0, 1}ni for all

i. Note that for t > 1, we have

R(n1, . . . , nt) ≤ nt ·R(n1, . . . , nt−1) +
n

nt
T (nt) + αn,

where the first and second terms correspond to the bulk of the runtime of Algorithm 2 for the
for-loops 5 and 8 respectively, whereas the constant α is chosen to be big enough that the αn-term
covers all the other operations needed throughout the algorithm. We claim that

R(n1, . . . , nt) ≤ (α+ 1)

t∑
i=1

n

ni
· T (ni).

For t = 1, the statement is obvious. For t > 1, by induction we have

R(n1, . . . , nt) ≤ (α+ 1)nt

t−1∑
i=1

n/nt

ni
T (ni) +

n

nt
T (nt) + αn

≤ (α+ 1)
t∑

i=1

n

ni
T (ni),

where in the last line we used the fact that by our theorem’s requirement on T , we have αn =
αn
nt
nt ≤ αn

nt
T (nt).

5 Decoding Tensor Reed-Muller Codes from Random Errors

In this section, we leverage our Algorithm 2 to prove the following formal version of Theorem 1.
Note that it is sufficient to prove Theorem 1 for t ≤

√
log n, since after that the O

(
1
t

)
improvement

in the error probability is subsumed by the o(1) term (one can always artificially increase t by taking
tensor products with the trivial Reed-Muller code {0, 1}).

Theorem 6. Consider any constants p ∈ (0, 12) and R < 1 − h(p). Let n ∈ N be some growing
parameter and consider any corresponding integer 3 ≤ t ≤

√
log n. Define

• m1 := ⌈log log n− 3⌉ and r1 to be any integer such that
(m1
≤r1

)
2m1 = R± o(1)

• m2 := ⌈10 log logn⌉ and r2 := ⌈m2
2 +

√
m2 logm2⌉

• m3 = . . . = mt := ⌈ logn−m1−m2

t−2 ⌉ and r3 = . . . = rt := ⌈
m3+m

3/4
3

2 ⌉

Then the Tensor Reed-Muller code TRM(r1,m1; . . . ; rt,mt) has length n1+o(n) and rate R ± o(1).
Moreover, there exists a decoder D with the following properties:

1. D has runtime O (n log logn) in the case t = 3 and runtime O (n log n) in the case t > 3.
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2. For every codeword c ∈ TRM(r1,m1; . . . ; rt,mt), D has decoding failure probability

Pr
z∼p

[
D(c+ z) ̸= c

]
≤

n−ω(logn) if t = 3,

2−n
1
2− 1

2(t−2)
−o(1)

otherwise.

Proof. Note that TRM(r1,m1; . . . ; rt,mt) has rate

t∏
i=1

(mi
≤ri

)
2mi

≥
(
R− o(1)

) t∏
i=3

Ñ
1− 2

h(
mi−ri

mi
)mi

2mi

é
≥ (R− o(1))

t∏
i=3

(
1− 2−

√
m3

2 ln 2

)
≥ (R− o(1))(1− t2−

√
m3

2 ln 2 ),

where the first inequality follows from the fact that
( n
≤d

)
≤ 2h(

d
n
)n for all integers n and d ≤ n

2 , the

second inequality follows from the fact that h
Ä
1−µ
2

ä
≤ 1− µ2

2 ln 2 for any µ ∈ (0, 1), and the third

inequality follows from the fact that (1 + x)r ≥ 1 + rx for all x ≥ −1 and r ≥ 1. Since t ≤
√
log n

and m3 = Ω( lognt ), our code TRM(r1,m1; . . . ; rt,mt) indeed has rate R ± o(1). It also has length

2m1+m2 · 2(t−2)⌈ logn−m1−m2
t−2

⌉ = n1+o(1).
The decoder D we use for decoding our code is given in Algorithm 3. We represent each codeword

of TRM(r1,m1; . . . ; rt,mt) as a 2m1× . . .×2mt Boolean tensor. For any tensor A ∈ {0, 1}2m1×...×2mt ,
we call any vector along the first axis of A a “row” of A and call any vector along the second axis of
A a “column” of A. We first bound the probability that Algorithm 3 makes a decoding mistake.
Note that the only way a decoding mistake can occur is if either:

(i) Our algorithm would fail even if the counter condition (last sentence of line 10) was disregarded.

(ii) The counter eventually exceeds n2−2(log logn)1/4

.

We first show that point (i) is very unlikely to occur. Note that by Theorem 3, the lookup table D1

used in the row-for loop of our Algorithm 3 (line 6) satisfies that for any c1 ∈ RM(r1,m1),

Pr
z∼p

[
D1[c1 + z] ̸= c1

]
≤ 2−2Ω(

√
m1)

≤ 2−2Ω(
√
log logn)

. (3)

Thus at the end of the row-for loop, every entry of A has probability ε ≤ 2−2Ω(
√
log logn)

of being
different from the corresponding entry of the sent codeword B. Furthermore, since D1 was applied
independently to every row of A, any coordinates of A that are not in the same row have uncorrelated
probabilities of being correct.

In particular, at the end of the row-for loop, the entries of any given column of A have uncorrelated
probabilities of being incorrect. Now, since ε ≤ 2−m2

5 for all n large enough, we get from Lemma 4
that for any c2 ∈ RM(r2,m2), the decoder D2 used in the column-for loop (line 10) of our Algorithm

11



Algorithm 3: An efficient decoder for t-tensor Reed-Muller codes

Input: A 2m1 × . . .× 2mt Boolean tensor A.
Output: A 2m1 × . . .× 2mt Boolean tensor.

1 Create a look-up table D1 : {0, 1}2
m1 → RM(r1,m1).

2 for each vector s ∈ {0, 1}2m1 do
3 Use brute-force search to find the c ∈ RM(r1,m1) closest to s. Set D1[s] = c.
4 end
5 for each row u of A do
6 Replace u by D1[u].
7 end
8 counter← 0.
9 for each column v of our updated tensor A do

10 Use Lemma 3 to check if v ∈ RM(r2,m2). If not, increase counter by 1 and
replace the column v by the codeword D2(v) ∈ RM(r2,m2), where D2 is the

decoder from Lemma 4 for the code RM(r2,m2). If counter > n2−2(log logn)1/4

,
abort the entire algorithm and return the 0⃗ codeword.

11 end
12 If t = 3, output the updated tensor A. If t > 3, run Algorithm 2 on A and return

the output (if Algorithm 2 outputs a tensor filled with erasure symbols, return the
0⃗ codeword).

3 satisfies

Pr
z∼ε

[
D2(c2 + z) ̸= c2

]
≤ O

Å
2−2

m2−r2
2

ã
= 2−22.5 log logn±o(log logn)

≤ 2−ω(log2 n) (4)

Thus at the end of our column-for loop, if we disregard the counter condition when running the
algorithm, then every entry of A has probability

ε′ ≤ n−ω(logn) (5)

of being incorrect. Taking a union bound over all coordinates then concludes the analysis of point
(i) for the case t = 3. For the case t > 3, we define for every k ∈ [2m3 ] × . . . × [2mt ] the Boolean
random variable Xk that is 1 if and only if upon running Algorithm 3 without the counter condition,
at the end of the column-for loop (line 11), there exists (i, j) ∈ [2m1 ]× [2m2 ] such that the entry
Aijk is incorrect. By (5), since D1 was applied independently to every row and D2 was applied
independently to every column, the random variables {Xk} are independent Bernoulli random
variables with probability parameter at most 2m1+m2ε′ = n−ω(logn). By the Chernoff bound (Lemma
1), we then have
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Pr

[∑
k

Xk ≥
dmin

(
TRM(r1,m1; . . . ; rt,mt)

)
2m1+m2+1dmin

(
RM(r3,m3)

) ]
≤ 2

−
dmin

(
TRM(r1,m1;... ;rt,mt)

)
dmin

(
RM(r3,m3)

) ·n−o(1)

≤ 2−n
t−3

2(t−2)
−o(1)

.

Thus if we disregard the counter condition when running the algorithm, we get that with probability

1− 2−n
t−3

2(t−2)
−o(1)

, there are ≤ dmin

(
TRM(r1,m1;... ;rt,mt)

)
2dmin

(
RM(r3,m3)

) errors remaining after the line-9 for loop. By

Theorem 5, line 12 will then succeed with probability at least 1− 2−n
1
2− 1

2(t−2)
−o(1)

. This concludes
our analysis for point (i). We then turn to showing that point (ii) is very unlikely to occur. Note
that by (3), at the end of the row-for loop (line 7) of our algorithm, for any k ∈ [2m3 ]× . . .× [2mt ]
we have

Pr
[
∃(i, j) ∈ [2m1 ]× [2m2 ] such that Ai,j,k is incorrect

]
≤ 2m2 · 2−2Ω(

√
log logn)

≤ 2−2Ω(
√
log logn)

.

Since Algorithm 3 processes each k ∈ [2m3 ]×. . .×[2mt ] independently up to the end of the column-for
loop (line 11), we get

Pr

ï
counter exceeds n2−2(log logn)1/4

ò
≤ Pr

n2−m1−m2∑
k=1

2m1Yk ≥ n2−2(log logn)1/4


for {Yk} independent Bernoulli variables of probability 2−2Ω(

√
log logn)

. By the Chernoff bound
(Lemma 1), we then have

Pr

ï
counter exceeds n2−2(log logn)1/4

ò
≤ 2

−Ω

Ç
n2−2(log logn)1/4

/2m1

å
≤ O

Ä
2−

√
n
ä
.

Combining this bound for point (ii) with our previously established bound for point (i), we get

Pr
z∼p

[
D(c+ z) ̸= c

]
≤ n−ω(logn) +O

Ä
2−

√
n
ä

for the case t = 3 and

Pr
z∼p

[
D(c+ z) ̸= c

]
≤ 2−n

1
2− 1

2(t−2)
−o(1)

+O
Ä
2−

√
n
ä

for the case t > 3, as desired. We now turn to bounding our algorithm’s runtime. Since there are
22

m1 vectors in {0, 1}2m1 , creating the look-up table D1 takes time

22
m1 ·O(22

m1
2m1) = o(n). (6)

Since there are n
2m1 rows in the tensor A and since looking up a value in the table D1 takes time

O(2m1), the row-for loop (line 5) then takes time

n

2m1
·O (2m1) = O (n) . (7)
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For the column-for loop (line 9), since there are n
2m2 columns in the tensor A, by Lemmas 3 and 4

the algorithm takes time

n

2m2
·O(m22

m2) + n2−2(log logn)1/4 · 2O(m2) = O (n log log n) . (8)

Combining equations (6), (7) and (8), we get that our decoder D has total runtime O (n log logn)
when t = 3. When t > 3, the algorithm additionally has to process line 12, which takes time

O (n log n) (9)

by Theorem 5 and Lemma 3. This brings the total runtime for the case t > 3 to O (n log n) .
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