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Abstract. It is known that the Shannon capacity of the q-ary symmetric channel
(qSC) is the same as the list-decoding capacity of an adversarial channel, raising the
question of whether there is a formal (and black-box) connection between the two. We
show that there is: Any linear code C ⊆ Fn

q that has minimum distance dmin = ω
(
q3
)

and achieves list-decoding capacity also achieves capacity on the qSC.

1. Introduction

A linear code of length n over a finite field Fq is a Fq-linear subspace C ⊆ Fn
q . In

coding theory, we think of a code C as the set of encodings of possible messages. If
a sender wants to send a message to a receiver over a noisy channel, they choose the
corresponding element c ∈ C (called a codeword), and transmit c over the channel. A
receiver sees a noisy version of the codeword, c̃, and must recover c. Two primary goals
in designing such a code C are (a) low redundancy, meaning that n, the length of a
codeword c ∈ C, is not too much larger than logq |C|, the length of a message encoded
with the code; and (b) tolerance of as many errors as possible.

The requirement of low redundancy is quantified by the rate of the code: The rate R

of a code C ⊆ Fn
q is defined as R =

logq |C|
n

. The rate R is always between 0 and 1, and
the larger it is, the lower the redundancy of the code.
The requirement on error tolerance depends on the channel model. In this paper,

we focus on two well-studied channel models, both parameterized by p ∈ (0, 1). The
first model is the q-ary symmetric channel1 qSCp. The second model is an adversarial
channel that may corrupt up to a p-fraction of the symbols sent in a worst-case way.
Thus, in each model, we are concerned with the best possible trade-off between R and p.

In the case of the qSCp, the best trade-off between R and p is well-understood. The
best rate at which reliable communication possible on the qSCp—known as the Shannon
capacity of the channel—is R = 1− hq(p), where

hq(p) := (1− p) logq
1

1− p
+ p logq

q − 1

p

is the q-ary entropy function [Sha48]. A family of codes that approaches this trade-off
is said to achieve capacity on the qSCp (see Definition 1).

1In the qSCp, each q-ary symbol is corrupted independently with probability p; if a symbol is corrupted,
it is replaced by a uniformly random different symbol in Fq.
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As one would expect, the best possible trade-off between R and p is worse in the
adversarial case than in the stochastic case.2 However, if one relaxes the definition
of “reliable decoding,” one can do better. More precisely, we consider the notion of
list-decoding, a classical notion introduced by Elias and Wozencraft [Eli57, Woz58]. In
list-decoding, the decoder’s goal is no longer to return only the transmitted codeword
c ∈ C, but rather a short list of possible codewords that is guaranteed to include c.
Formally, C is (p, L)-list-decodable if for all w ∈ Fn

q ,

|{c ∈ C : d(w, c) ≤ pn}| ≤ L.

It is known (see, e.g., [GRS23], Theorem 7.4.1) that the best 3 possible trade-off between
R and p in the list-decoding setting is also 1− hq(p), exactly the same as the Shannon
capacity of the qSCp! If a family of list-decodable codes approaches this trade-off, we
say that it achieves list-decoding capacity (see Definition 2).

Our question. This state of affairs raises a natural question: Since the capacity of the
qSCp is the same as the list-decoding capacity, is there a formal connection between these
two notions? In the list-decoding literature, it is common to introduce list-decoding as
a “bridge” between the Shannon and Hamming models, in that list-decoding allows one
to reach the Shannon capacity of a channel, even under a worst-case (Hamming) model
of errors.4 But can this be made formal?
In this paper we show that there is a formal connection, at least in one direction.

That is, we show that any list-decodable code C with good enough minimum distance5

achieves capacity on the qSCp. (As we note below, the converse is not true.) In the
next section, we describe our results in more detail.

1.1. Our Results. Our main result is the following theorem.

Theorem 1. Let p ∈ (0, 1). Let {Cn ⊆ Fn
q } be a family of linear codes that achieves list-

decoding capacity on the adversarial channel that introduces a p-fraction of corruptions.

If dmin(Cn) = ω
(

q3

(1−p)2

)
, then {Cn} achieves capacity on the qSCp.

Theorem 1 follows from a more general statement about (p, L)-list-decodability, which
we present in Theorem 15. Next, we state a slightly weaker but more easily digestible
version of that result.

2In fact, for small q, the best possible trade-off between R and p is still unknown in the adversarial
model.
3In this informal discussion, we have not mentioned the size L of the list the decoder is allowed
to output. Slightly more formally, the list-decoding capacity theorem states that there are codes of
rate R = 1 − hq(p) − ϵ that are (p, L)-list-decodable where L depends on ϵ but not on n; and that
conversely any code of rate bounded above 1− hq(p) cannot be list-decodable with any list size L that
is sub-exponential in n.
4For example, the chapter on list-decoding in the textbook [GRS23] is titled “Bridging the Gap Between
Shannon and Hamming: List Decoding.”
5The minimum distance of a code C is dmin(C) = minc ̸=c′∈C d(c, c′), where d(·, ·) denotes Hamming
distance.
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Theorem 2. Let C ⊆ Fn
q be a linear, (p, L)-list-decodable code with minimum distance

dmin(C) ≥ q3

(1−p)2
ln4(nL) for sufficiently large n. Then C can be used for reliable

communication on the qSCp′, where p′ = p− 7
lnn

.

See Section 5 for the proof of Theorems 1 and 2.

Remark 1 (Requirement on the field size). As stated, the hypothesis of Theorem 2
requires that dmin(C) be at least q3, which in particular implies that q < n1/3. This rules
out codes like Folded Reed-Solomon codes, where q is a large polynomial in n. However,
for known constructions of list-decodable codes over growing alphabets, the conclusion
of Theorem 2 already follows from previous work, and so our contribution is to focus on
the case where q ≥ 2 is fixed.

In more detail, it is known that any linear code with distance at least pn over
a sufficiently large alphabet admits reliable communication over the qSCp′ for some
p′ = p − o(1) [RU10]; and it is also known that any linear (p, L)-list-decodable code
C ⊆ Fn

q with q ≥ L has distance at least pn [GST21, Proposition 6.5]. Thus, any linear
(p, L)-list-decodable code C ⊆ Fn

q with q = ω(1) and L = O(1) has distance at least pn
by [GST21], and therefore admits reliable communication on the qSC by [RU10].

We note that the converse of Theorem 1 (qSC capacity implying list-decoding capacity)
does not hold in general. For instance, Reed-Muller codes achieve capacity over the
BSCp [RP24, AS23] but have 2Ω(n) codewords of weight ≤ pn, for every constant p
(see, e.g., [ASSY23]). We leave it as an intriguing open problem to identify sufficient
conditions under which the converse holds.
We show in Appendix B that the requirement that the minimum distance be large

cannot be avoided entirely. More precisely, we show that there exist codes C ⊆ Fn
q

with constant minimum distance that achieve list decoding capacity but do not achieve
capacity on the q-ary symmetric channel.

Finally, we give a simple proof that Theorem 2 holds for erasures, without the linearity
and alphabet size requirements.

Theorem 3. Let C ⊆ Zn
q be a (p, L)-list-decodable code with minimum distance

dmin(C) = ω(logL). Then C can be used for reliable communication on the q-ary
erasure channel, qECp′, where p′ = p− o(1).

We prove Theorem 3 in Appendix A.

Remark 2 (New results for capacity-achieving codes on the qSCp?). It is natural to
ask whether or not our results imply new constructions of capacity-achieving codes on
the qSCp. The answer is yes, in that there are known capacity-achieving list-decodable
codes over constant-sized alphabets, even with efficient algorithms, to which our theorem
applies and which to the best of our knowledge had not previously been known to achieve
capacity on the qSC (e.g. [HRW17, KRSW18, GR22]). However, it seems unlikely
that these constructions—which are designed to solve the (as we show here) strictly
harder problem of list-decoding—would yield more practical results on the qSC than
polar codes [Ari09]. Thus, our main contribution is to establish a formal connection
between these two problems.
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1.2. Overview of Techniques. Before we discuss our techniques, we set up a bit more
notation. For a transmitted codeword c ∈ C, we write the received corrupted codeword
as

c̃ = c+ z,

where z ∈ Fn
q is an error vector. Thus, in the qSCp, each coordinate of zi is independent,

and is equal to 0 with probability 1− p and is uniformly random in F∗
q with probability

p. In the adversarial channel, z is an arbitrary vector of weight at most pn.
Now we can give a high-level overview of our techniques. Let D∗ : Fn

q → C be a

maximum-likelihood decoder on the qSCp.
6 As C is linear, we can pick D∗ so that

its success depends only on the error vector z, and we may assume without loss of
generality that the transmitted codeword was c = 0⃗. Define the function

f(z) :=

{
1 if D∗(z) = 0⃗,

0 otherwise.
(1)

The expectation of f is exactly the probability that D∗ outputs the correct codeword.
Showing that C allows reliable communication on qSCp′ for some p′ = p− o(1) is thus
equivalent to showing that

E
z∼p′

[f(z)] = 1− o(1).(2)

In the equation above, we use z ∼ p′ to mean that, independently for each coordinate
i ∈ [n],

zi =

{
0 with probability 1− p′

j ∈ {1, 2, . . . , q − 1} with probability p′

q−1

.

One key observation is that if C is (p, L)-list-decodable, then we must have

E
z∼p′

[f(z)] ≥ 1

L
− o(1)(3)

for, say, p′ = p− n−1/4. Indeed, consider the following decoder D: upon receiving some
corrupted codeword m ∈ Fn

q , find all the codewords c ∈ C such that wt(c+m) ≤ pn,
and output one such codeword uniformly at random. Since C is (p, L)-list decodable,
there can never be more than L codewords c ∈ C satisfying wt(c+m) ≤ pn. Thus as
long as the error string z has weight smaller than pn, the decoder D will succeed in
outputting the correct codeword with probability at least 1

L
. But if z ∼ p′, then z has

weight smaller than pn with high probability. Thus, on z ∼ p′ our decoder D outputs
the correct codeword with probability at least 1

L
− o(1). Since the max-likelihood

decoder D∗ is optimal, it must perform at least as well as the decoder D, and we thus
get (3).
In order to deduce (2) from (3), it will then suffice to show that the function

g(p′) = Ez∼p′ [f(z)] has a sharp transition as a function of p′. This was proven for q = 2
in [Zém93, TZ00]. Thus, combined with their result, the above argument immediately
implies Theorem 2 for binary codes. Our main technical contribution is to generalize

6That is, given a corrupted codeword c̃ = c+ z, the decoder D∗ returns a closest codeword D∗(c̃) to c̃.
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their arguments to larger field sizes.7 Formally, our goal will be to bound the derivative
of E[f ] by

d

dp
E
z∼p

[f(z)] ≤ −ω(1) · E
z∼p

[f(z)]
(
1− E

z∼p
[f(z)]

)
.(4)

Margulis [Mar74] and Russo [Rus82] pioneered the use of such inequalities for proving
that the expectation of certain Boolean functions transitions quickly from 1 − o(1)
to o(1). The point is that whenever E[f ] is away from 0 and away from 1, we have

E[f ](1− E[f ]) away from 0, and thus the ω(1) term in (4) ensures that in this regime
the derivative of E[f ] is large.

Now for any monotone function f : Fn
q → {0, 1}, we can bound the derivative of the

expectation as

d

dp
E
z∼p

[f(z)] ≤ − 1

q − 1
E
z∼p

[hf (z)],(5)

where we define the quantity

hf (z) :=

{∣∣∣{i ∈ [n] : zi = 0 and ∃a ̸= 0 s.t. f(zai) = 0
}∣∣∣ if f(z) = 1,

0 otherwise.

For q = 2, the inequality (5) first appeared in [Mar74, Rus82] and is called Russo’s
Lemma; the generalization to larger q is stated as Lemma 9. To make use of (5), we
prove in Section 3 the following isoperimetric inequality, which is a generalization of a
bound proven by Talagrand for q = 2:

E
z∼p

[
hf (z)

]
≥ 1− p

2

√
∆f · E

z∼p
[f(z)]

(
1− E

z∼p
[f(z)]

)
,(6)

where we denoted the minimum positive value of hf by

∆f := min
x∈Fn

q :hf (x) ̸=0
{hf (x)}.

To obtain our desired inequality (4) from the bounds (5) and (6), it will thus suffice
to show that our specific function f (the indicator function of a successful decoding,
defined in (1)) satisfies ∆f = ω(1). That is, we want to show that if x ∈ Fn

q is some
error string that leads to correct decoding, and if one of the neighbors of x leads to
incorrect decoding, then there must be many such “bad” neighbors of x.
Intuitively, this is because in order for x and one of its neighbors to be mapped to

different codewords, it must be the case that x is about halfway between the transmitted
codeword (as above, let us assume that the transmitted codeword is the all-0 codeword),
and some other codeword c. Formally, it must be the case that

d(x, 0) ≤ d(x, c) ≤ d(x, 0) + 2,

where d(a, b) denotes the Hamming distance between vectors a and b. For simplicity, in
this section assume that d(x, c) = d(x, 0) + 1. Then for any coordinate i ∈ [n] where

7As discussed in Section 1.3, such a generalization was asserted in [KCC10] in a different context, but
as discussed in Appendix C, we believe that their proof is missing key elements.
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xi = 0 and ci ̸= 0, the neighbor x′ of x obtained by setting the ith coordinate to ci is
closer to c than to 0. Each such neighbor x′ thus satisfies f(x′) = 0, and we have

hf (x) ≥
∣∣{i ∈ [n] : xi = 0, ci ̸= 0

}∣∣.
The exact number of such coordinates i ∈ [n] can be bounded in terms of the distance
between 0 and c, which itself is bounded by the minimum distance of the code. See
Section 4 for more details.

Once we obtain a lower bound on ∆f , our desired inequality (4) follows from equations
(5) and (6).

1.3. Related Work. Both capacity-achieving codes on the qSC and capacity-achieving
list-decodable codes are extremely well-studied, with lines of work going back to the
1950’s or earlier. In this section, we mention a few of the most relevant works.

Capacity-Achieving Codes on the qSCp. As noted above, the capacity of the qSCp

has been known since Shannon’s seminal work in the 1940’s [Sha48]. Shannon already
observed that random codes achieve capacity, but it was not until the 1960’s that
explicit constructions were obtained with Forney’s concatenated codes [For66]. These
codes have poor performance in terms of the gap to capacity, which has been more
recently improved by Arıkan with polar codes [Ari09]; polar codes also have efficient
decoding algorithms. Even more recently, Reed-Muller codes have also been shown to
achieve capacity on the binary symmetric channel [ASW15, KKM+16, RP24, AS23].
Ensembles of LDPC codes are also known to achieve capacity under maximum-likelihood
decoding [Gal62], or even under efficient algorithms [LMS+97, KRU13].

List decoding. The notion of list decoding was first introduced by Elias [Eli57] and
Wozencraft [Woz58], and since then several ensembles of codes have been shown to
achieve list-decoding capacity. Here, we survey these codes and also comment on how
Theorem 1 applies to them.

The original work of Elias and Wozencraft showed that uniformly random codes
achieve list-decoding capacity with high probability, and a more recent line of work has
established the same for uniformly random linear codes [ZP81, GHK10, Woo13, LW21,
GLM+22]. Both random codes and random linear codes are known to achieve capacity
on the qSC with high probability, so our results do not imply anything new for these
ensembles.

The first explicit constructions were obtained by Guruswami and Rudra, who showed
in [GR08] that folded Reed-Solomon codes achieve list decoding capacity. This break-
through was followed by a line of work on explicit constructions, both improving the list
size for folded RS codes (e.g., [KRSW18, Tam24, Sri24, CZ24]), and by extending these
results to other families of codes, including multiplicity codes [GW13, Kop15]. Going
back to randomized constructions (though with more structure than random linear
codes), a recent line of work has also established that randomly punctured Reed-Solomon
codes [BGM23, GZ23, AGL24, BST24] are also capacity-achieving list-decodable codes.
As discussed in Remark 1, our resuls to not apply to these codes (as they are over large
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alphabets), but for those with constant list-sizes, the fact that they achieve capacity on
the qSC follows from known results.
Finally, we turn to constructions of capacity-achieving list-decodable codes with

constant alphabet sizes. These include Gallager’s ensemble of LDPC codes [MRR+20];
concatenated codes [GR10]; and constructions based on algebraic geometry (AG)
codes, for example [GX13, HRW17, GR22, GX22, BDGZ23]. Some of these codes—for
example, [HRW17, GR22]—come with efficient list-decoding algorithms and were also
not already known to achieve capacity on the qSCp. Combined with our results, this
implies that not only do these codes achieve capacity on the qSCp, but they also have
efficient decoding algorithms.

Threshold Phenomena. As mentioned in Section 1.2, our main technical contribution
is a threshold result for the success probability of decoding on the qSCp. Our techniques
build on a long line of work, which we briefly mention here.

Margulis [Mar74], Russo [Rus82] and Talagrand [Tal93] showed that the expectation
of any monotone8 Boolean function f sharply transitions from E[f ] ≥ 1 − o(1) to

E[f ] ≤ o(1), as long as no z ∈ f−1(1) has a small, nonzero number of neighbors in
f−1(0). This fact has already seen many applications in coding theory [Zém93, TZ00,
TZ04, KKM+16, KCP16]. In particular, Tillich and Zémor proved in [Zém93, TZ00]
that the decoding probability of any binary linear code with large minimum distance
undergoes a sharp transition. Our main technical contribution is a generalization of
these results to larger alphabets (see Sections 3 and 4, and in particular Theorem 14).
We note that an attempt was already made in [KCC10] to generalize the results of

Tillich and Zémor to larger alphabets, but unfortunately the proof in [KCC10] seems
to be missing key elements and does not seem to be correct as written. We explain in
Appendix C why we think that a new proof of this generalization is needed.

2. Conventions and Preliminaries

2.1. Finite fields. We will work with the finite field Fq over q elements. Given any
vector z ∈ Fn

q , we denote its Hamming weight by

wt(z) :=
{
i ∈ [n] : zi ̸= 0

}
.

Given two vectors y, z ∈ Fn
q , we denote their Hamming distance by

d(y, z) := wt(z − y).

2.2. Probability Theory. For any probability distribution D over a set X, we will use
the notation x ∼ D to denote a random element x ∈ X sampled according to D. The
main probability distribution that we will use throughout this paper is the distribution
of a p-noisy string over Fn

q , which we define as follows. For p ∈ [0, 1], we use

z ∼ p

8See Section 2.3 for a formal definition of monotonicity.
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to denote a p-noisy string z ∈ Fn
q , meaning that for each i ∈ {1, . . . , n}, ith entry is

independently

zi =

{
0 with probability 1− p,

j with probability p
q−1

, for all j ∈ {1, 2, . . . , q − 1}.

We will also need Hoeffding’s inequality (see for example, [BLM13]).

Lemma 4 (Hoeffding’s Inequality). Let X1, X2, . . . , Xn be independent random variables
taking values in [0, 1]. Then for any t > 0, we have

Pr
[ n∑

i=1

Xi >

n∑
i=1

E[Xi] + t
]
≤ e−

2t2

n

and

Pr
[ n∑

i=1

Xi <
n∑

i=1

E[Xi]− t
]
≤ e−

2t2

n .

2.3. Monotonicity. A property that will play a key role in our analysis is monotonicity.
We say that a function f : Fn

q → {0, 1} is monotone decreasing if for any index i ∈ [n],
any point z ∈ Fn

q , and any a ∈ {1, 2, . . . , q − 1}, we have

f(z0i) ≤ f(zai).

The expectation of any monotone decreasing function is decreasing (see for e.g. [BLM13],
page 280).

Fact 5. For any monotone decreasing function f : Fn
q → {0, 1}, the function

g(p) := E
z∼p

[f(z)]

is decreasing.

We derive some useful properties of monotone functions in Section 3.

2.4. Coding and Decoding. A linear code of length n over the field Fq is a subspace
C ⊆ Fn

q . A deterministic decoder for a code C ⊆ Fn
q is a function D : Fn

q → C, and a
randomized decoder is a probability distribution over the set of deterministic decoders.
We say that the code C ⊆ Fn

q admits reliable communication on the qSCp if there exists
a randomized decoder D such that for all c ∈ C, we have

Pr
[
D(c+ z) = c

]
≥ 1− o(1),

where the probability is taken over both the randomized decoder D and the random
variable z ∼ p. A maximum-likelihood decoder D∗ over the qSC is a deterministic
decoder that, upon seeing a corrupted message m, returns a codeword c ∈ C closest to
m. We say that D∗ is symmetric if it breaks ties in a symmetric way, meaning that if
D∗(z) = 0 then D∗(z+c) = c. It is well-known that any symmetric maximum-likelihood
decoder is optimal for decoding random errors (see, e.g. [MS77], page 8).
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Fact 6. For any code C ⊆ Fn
q , any corresponding symmetric maximum-likelihood

decoder D∗ is optimal. That is, for any p ∈ (0, 1) and any decoder D, we have

min
c∈C

{
Pr
z∼p

[
D(c+ z) = c

]}
≤ min

c∈C

{
Pr
z∼p

[
D∗(c+ z) = c

]}
.

2.5. Communication Channels. We will be interested in the performance of codes
under both stochastic and adversarial noise.
The model we will use for stochastic noise is the q-ary Symmetric Channel, which

is characterized by a parameter p ∈ (0, 1). When an element c of the code C ⊆ Fn
q

is sent through the q-ary Symmetric Channel qSCp, each of its n entries is corrupted
independently at random with probability p. If corrupted, the ith entry ci is replaced
by a uniformly random element in Fq \ {ci}. It is well-known [Sha48] that a uniformly
random code C ⊆ Fn

q of rate

rate(C) = 1− hq(p)− o(1)

will with high probability admit reliable communication on the qSCp, where hq denotes
the q-ary entropy function

hq(p) := (1− p) logq
1

1− p
+ p logq

q − 1

p
.

On the other hand, no code C ⊆ Fn
q of rate 1 − hq(p) + o(1) can admit reliable

communication on the qSCp. Thus we have the following definition of qSC-capacity.

Definition 1. A sequence of codes {Cn ⊆ Fn
q } of rate 1− hq(p) achieves capacity over

the qSCp if there exists a function ϵ(n) = o(1) such that each Cn satisfies

Pr
z∼p−ϵn

[D(c+ z) = c] ≥ 1− ϵn.

In the adversarial noise model, the location of the errors is decided by some adversary
rather than being stochastic. We say that the code C ⊆ Fn

q is (p, L)-list decodable if for
any z ∈ Fn

q , the ball of radius pn around z contains at most pn codewords c ∈ C. A
uniformly random code C ⊆ Fn

q of rate

rate(C) = 1− hq(p)− ϵ(7)

is (p,O(1
ϵ
))-list decodable with high probability (see for e.g. [GRS23], Theorem 7.4.1).

On the other hand, no code C ⊆ Fn
q of rate larger than 1 − hq(p) + ϵ is (p, L)-list

decodable for any L < qΩ(ϵn). Thus we obtain the following definition of list decoding
capacity.

Definition 2. A sequence of codes {Cn ⊆ Fn
q } of rate 1− hq(p) achieves list decoding

capacity if for every function L(n) = ω(1), there exists a function ϵ(n) = o(1) such that
each Cn is (p− ϵ(n), L(n))-list decodable.

We note for example that by equation (7), uniformly random codes achieve list
decoding capacity with ϵ(n) = O( 1

L(n)
). But in general, we allow for worse dependence

of ϵ on L: we only require that ϵ go to 0 as n goes to infinity.
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3. An isoperimetric inequality over finite fields

In this section, we generalize an F2-result of Talagrand to finite fields of all sizes. For
any function f : Fn

q → {0, 1} and any point z ∈ Fn
q , we define the quantity

hf (z) :=

{∣∣∣{i ∈ [n] : zi = 0 and ∃a ̸= 0 s.t. f(zai) = 0
}∣∣∣ if f(z) = 1,

0 otherwise.

Our goal will be to relate the quantities E[hf ] and E[f ]. Theorem 7 below was proven
for the special case of q = 2 by Talagrand in [Tal93]; we extend that result to arbitrary
field sizes.

Theorem 7. For any monotone decreasing function f : Fn
q → F2 and any noise

parameter p ∈ [0, 1], we have

E
[√

hf

]
≥ 1− p

2
· E[f ]

(
1− E[f ]

)
,

where all the expectations are taken over the q-ary p-noisy distribution.

Proof. We proceed by induction on n. For the base case n = 1, either we have
f(0) = f(a) for all a ∈ Fq, in which case the right-hand side is 0 and the inequality
holds trivially; or we have f(0) = 1 and f(a) = 0 for some a ∈ {1, 2, . . . , q − 1}, in
which case we get

E
[√

hf

]
= 1− p

≥ 1− p

2
· E[f ]

(
1− E[f ]

)
.

We thus turn to the induction step. Suppose the desired statement holds for n− 1, and
consider some function f : Fn

q → F2. We may assume that

E
[√

hf

]
≤ 1− p

2
,(8)

as otherwise the desired claim is trivial. For each a ∈ Fq, define the following function
of n− 1 variables.

fa(x) := f(xan).

For convenience, we will denote the expectation of each of these functions by Ea := E[fa],
where again the expectations are taken over the p-noisy distribution. By definition, we
have

E[f ] = (1− p)E0 +
p

q − 1

∑
a∈Fq\{0}

Ea,(9)
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and thus

E[f ]
(
1− E[f ]

)
=

(
(1− p)E0 +

p

q − 1

∑
a∈Fq\{0}

Ea

)(
1− (1− p)E0 −

p

q − 1

∑
a∈Fq\{0}

Ea

)
= (1− p)E0

(
1− E0 + pE0 −

p

q − 1

∑
a∈Fq\{0}

Ea)
)

+
p

q − 1

∑
a∈Fq\{0}

Ea

(
1− Ea + (1− p

q − 1
)Ea − (1− p)E0 −

p

q − 1

∑
b∈Fq\{0,a}

Eb

)
.

Extracting from the expression above the terms corresponding to the variance of each
fa, we get

E[f ]
(
1− E[f ]

)
= (1− p)E0(1− E0) +

p

q − 1

∑
a∈Fq\{0}

Ea(1− Ea)

+ (1− p)pE0

(
E0 −

1

q − 1

∑
a∈Fq\{0}

Ea

)
+

p

q − 1

∑
a∈Fq\{0}

Ea

(
(1− p

q − 1
)Ea − (1− p)E0

)
− p2

(q − 1)2

∑
a∈Fq\{0}
b∈Fq\{0,a}

EaEb.(10)

The first line in the equation above is the sum of the individual variances. We will now
want to bound the contribution of the other terms. For this it will be useful to replace
each factor of 1− p by a factor of 1− p

q−1
, so that we can complete the square. That is,

we write the summands in the two middle lines of (10) as

(1− p)pE0

(
E0 −

1

q − 1

∑
a∈Fq\{0}

Ea

)
= (1− p

q − 1
)

p

q − 1

∑
a∈Fq\{0}

E0

(
E0 − Ea

)
− (1− 1

q − 1
)

p2

q − 1

∑
a∈Fq\{0}

E0(E0 − Ea)

and

p

q − 1

∑
a∈Fq\{0}

Ea

(
(1− p

q − 1
)Ea − (1− p)E0

)
=

p

q − 1
(1− p

q − 1
)

∑
a∈Fq\{0}

Ea

(
Ea − E0

)
+

∑
a∈Fq\{0}

p2

q − 1
(1− 1

q − 1
)EaE0.
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Combining the two equations above with (10), we get

E[f ]
(
1− E[f ]

)
= (1− p)E0(1− E0) +

p

q − 1

∑
a∈Fq\{0}

Ea(1− Ea)

+ (1− p

q − 1
)

p

q − 1

∑
a∈Fq\{0}

(
E0 − Ea

)2 − p2(q − 2)

(q − 1)2

∑
a∈Fq\{0}

E0(E0 − Ea)

+
∑

b∈Fq\{0}

p2(q − 2)

(q − 1)2
EbE0 −

p2

(q − 1)2

∑
a∈Fq\{0}
b∈Fq\{0,a}

EaEb.

Adding an artificial summation to the fourth and fifth sums above, we get

E[f ]
(
1− E[f ]

)
= (1− p)E0(1− E0) +

p

q − 1

∑
a∈Fq\{0}

Ea(1− Ea)

+ (1− p

q − 1
)

p

q − 1

∑
a∈Fq\{0}

(
E0 − Ea

)2
− p2

(q − 1)2

∑
a∈Fq\{0}
b∈Fq\{0,a}

(
E0(E0 − Ea)− EbE0 + EaEb

)
.

Defining the quantity

Emin := E
x∼pn−1

[
min

a∈Fq\{0}

{
f(xan)

}]
,

we can then bound the variance of f by

E[f ]
(
1− E[f ]

)
≤ (1− p)E0(1− E0) +

p

q − 1

∑
a∈Fq\{0}

Ea(1− Ea) + (1− p

q − 1
)p
(
E0 − Emin

)2
− p2

(q − 1)2

∑
a∈Fq\{0}
b∈Fq\{0,a}

(E0 − Eb)(E0 − Ea)

≤ (1− p)E0(1− E0) +
p

q − 1

∑
a∈Fq\{0}

Ea(1− Ea) + (1− p

q − 1
)p
(
E0 − Emin

)2
.(11)

Now that we have obtained a convenient expression for the right-hand side of our
theorem’s inequality, we turn to bounding the left-hand side. We note that since f is
monotone, we must have

E
z∼pn

[√
hf (z)

]
= (1− p) E

x∼pn−1

[√
hf0(x) + 1

{
f(x0n) = 1, f(xan) = 0 for some a ∈ Fq \ {0}

}]
+

p

q − 1

∑
a∈Fq\{0}

E
x∼pn−1

[√
hfa(x)

]
.
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Defining the function f−(x) := f(x0n)−mina∈Fq\{0}
{
f(xan)

}
, we then get

E
z∼pn

[√
hf (z)

]
= (1− p) E

x∼pn−1

[√
hf0(x) + f−(x)

]
+

p

q − 1

∑
a∈Fq\{0}

E
x∼pn−1

[√
hfa(x)

]
.

(12)

But applying the Cauchy-Schwarz inequality E[
√
gh]2 ≤ E[g]E[h] and the equality

(a+ b)(a− b) = a2 − b2, we have

E[f−]2 = E
[(√

hf0 + f− −
√

hf0

) 1
2
(√

hf0 + f− +
√

hf0

) 1
2
]2

≤ E
[√

hf0 + f− −
√

hf0

]
E
[√

hf0 + f− +
√

hf0

]
,

where in the first line we used the fact that f− takes values in {0, 1}, and thus√
f−(x) = f−(x) for all x ∈ Fn−1

2 . We can now bound the expected square root of
hf0 + f− by

E
[√

hf0 + f−
]
≥ E

[√
hf0

]
+

E[f−]2

E
[√

hf0 + f− +
√

hf0

]
≥ E

[√
hf0

]
+

E[f−]2

E
[
f−

]
+ 2E

[√
hf0

] ,
where in the last line we used the fact that

√
a2 + b2 ≤

√
(a+ b)2 = a + b, with

a =
√

hf0 and b =
√
f−. Combining the inequality above with equation (12), we get

E
[√

hf

]
≥ (1− p)E

[√
hf0

]
+ (1− p)

(E0 − Emin)
2

E
[
f−

]
+ 2E

[√
hf0

] + p

q − 1

∑
a∈Fq\{0}

E
[√

hfa

]
≥ (1− p)E

[√
hf0

]
+

p

q − 1

∑
a∈Fq\{0}

E
[√

hfa

]
+

1− p

2
(E0 − Emin)

2,

where in the last line we used assumption (8) and equation (12) to get E
[√

hf0

]
≤ 1

2
.

Applying our induction hypothesis to the functions {fa}a∈Fq , we then have

E
[√

hf

]
≥ (1− p)2

2
E0(1− E0) +

p

q − 1

∑
a∈Fq\{0}

1− p

2
Ea(1− Ea) +

1− p

2
(E0 − Emin)

2.

Combining this with equation (11), we indeed get

E
[√

hf

]
≥ 1− p

2
· E[f ]

(
1− E[f ]

)
.

□

We now denote the minimum non-zero value of hf (x) by

∆f := min
{
hf (z) : z ∈ Fn

q such that hf (z) ̸= 0
}
.

The expectation of hf can then be bounded as follows.
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Theorem 8. For any monotone decreasing function f : Fn
q → F2 and any noise

parameter p ∈ [0, 1], we have

E
[
hf

]
≥ 1− p

2

√
∆f · E[f ]

(
1− E[f ]

)
,

where all the expectations are taken with respect to the q-ary p-noisy distribution.

Proof. By Theorem 7 and the Cauchy-Schwarz inequality E[
√
g1g2]

2 ≤ E[g1]E[g2], we
have

1− p

2
· E[f ]

(
1− E[f ]

)
≤ E

[√
hf

]
≤

√
E
[
hf

]
Pr
x

[
hf (x) ̸= 0

]
.

By definition of ∆f , we then get

1− p

2
· E[f ]

(
1− E[f ]

)
≤

√
E
[
hf

]
· E

[
hf

]
∆f

=
1√
∆f

E
[
hf

]
.

□

4. Sharp Transition of the Decoding Error Probability

In this section, we will show that the decoding error probability of a linear code
C ⊆ Fn

q over the channel qSCp transitions rapidly from 0 to 1 (as a function of p). For
q = 2, this was proven by Tillich and Zémor in [Zém93, TZ00]. We follow a similar
approach, and generalize their results to arbitrary field size q. The first building block
of our argument is Russo’s Lemma, which for q = 2 first appeared in [Mar74, Rus82].
Over arbitrary field size q and for our particular definition of monotonicity, it generalizes
as follows.

Lemma 9. Let f : Fn
q → {0, 1} be a monotone decreasing function. Then we have

d

dp
E
z∼p

[f(z)] ≤ − 1

q − 1
E
z∼p

[hf (z)].

Proof. We think of the parameter p as a vector (p1, p2, . . . , pn) with pi = p for all i ∈ [n].
By definition, we have

d

dp
E
z∼p

[
f(z)

]
=

∑
i∈[n]

d

dpi
E
z∼p

[
f(z)

]
=

∑
i∈[n]

d

dpi
E
z∼p

[
(1− pi)f(z0i) + pi E

a∈{1,2,...,q−1}

[
f(zai)

]]
=

∑
i∈[n]

E
z∼p
a̸=0

[
− f(z0i) + f(zai)

]
.
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Since f is monotone decreasing, we must always have f(z0i) ≥ f(zai), and thus

d

dp
E
z∼p

[
f(z)

]
= −

∑
i∈[n]

E
z∼p
a̸=0

[∣∣f(z0i)− f(zai)
∣∣].

Considering only the vectors z with zi = 0, we then get

d

dp
E
z∼p

[
f(z)

]
≤ −

∑
i∈[n]

E
z∼p

[
1{zi = 0} · E

a̸=0

[
|f(z)− f(zai)|

]]
≤ −

∑
i∈[n]

E
z∼p

[
1{zi = 0} · 1

q − 1
1
{
∃a ̸= 0 s.t. |f(z)− f(zai)| = 1

}]
= − 1

q − 1
E
z∼p

[hf (z)].

□

From Lemma 9, it is clear that for any monotone function f : Fn
q → F2, any lower

bound on E[hf ] will yield an upper bound on the width of the threshold of E[f ]. We thus
turn to proving bounds on E[hf ], for f the indicator function of a successful decoding.
For this we will need the following helpful lemma. Recall that for any vectors a, b ∈ Fn

q ,
we denote by d(a, b) the Hamming weight of a− b.

Lemma 10. Suppose z ∈ Fn
q and c ∈ C satisfy

d(z, 0) ≤ d(z, c).

Then we must have∣∣supp(c) \ supp(z)∣∣ ≥ dmin(C)

q
− d(z, c) + min

c′∈C
{d(z, c′)}.

Proof. For notational simplicity, we define the set

S := supp(c) \ supp(z)

and the slack quantity

ν := d(z, c)−min
c′∈C

{d(z, c′)}

Our goal is to show that |S| ≥ dmin

q
− ν. We first note that since d(z, c) ≥ d(z, 0), we

must have

|S| ≥
∣∣{i ∈ supp(c) ∩ supp(z) : ci = zi}

∣∣.(13)

We also note that∣∣{i ∈ supp(z) ∩ supp(c) : ci = zi}
∣∣ ≥ 1

q − 1

∣∣supp(c) ∩ supp(z)
∣∣− ν.(14)

This is because for all α ∈ {1, 2, . . . , q − 1}, we have

d(z, αc) =
∣∣supp(z) \ supp(c)∣∣+ ∣∣supp(c) \ supp(z)∣∣+ ∣∣{i ∈ supp(z) ∩ supp(c) : αci ̸= zi}

∣∣,
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while by averaging there must be some α ∈ {1, 2, . . . , q − 1} such that∣∣{i ∈ supp(z) ∩ supp(c) : αci = zi}
∣∣ ≥ 1

q − 1

∣∣supp(z) ∩ supp(c)
∣∣.

Since d(z, c) ≤ d(z, αc) + ν for every codeword αc, we then get equation (14). With
respect to the minimum distance of our code C, this gives us

dmin ≤ wt(c)

=
∣∣supp(c) \ supp(z)∣∣+ ∣∣supp(c) ∩ supp(z)

∣∣
≤ |S|+ (q − 1)(|S|+ ν)

≤ q|S|+ qν,

where in the third line we used equations (13) and (14). □

We are now ready to prove our bound on E[hf ], for f the indicator function of a
successful decoding. Consider the following total order ≺ on Fn

q . If wt(a) < wt(b),
then a ≺ b. If wt(a) = wt(b) and the support of a comes after the support of b in
the lexicographic order, then a ≺ b. For completeness’ sake (this last point will not
appear in our analysis), if a and b have the same support and a comes after b in the full
lexicographic order (i.e. the lexicographic order with order 0 < 1 < 2 < ... < q − 1 over
Fq), then we say a ≺ b. Consider the max-likelihood decoder D∗ : Fn

q → C defined by

D∗(z) := min
c∈C

{z − c},(15)

where the comparisons between vectors are taken with respect to the total order ≺ .
For each codeword c ∈ C, we define the decoding region of c as follows.

Ωc := {z ∈ Fn
q : D∗(z) = c}.

Claim 11. For all c ∈ C, we have

Pr
z∼p

[D∗(z + c) = c] = Pr
z∼p

[z ∈ Ω0].

Proof. It is clear that

Pr
z∼p

[D∗(z) = 0] = Pr
z∼p

[z ∈ Ω0].

Thus it will suffice to show that for any codeword c ∈ C, the map z 7→ z + c is a
bijection between Ω0 and Ωc. But this is indeed the case, as by linearity of C we have

z ∈ Ω0 ⇐⇒ z ≺ z − c′ for all c′ ∈ C

⇐⇒ z + c− c ≺ z + c− c′ for all c′ ∈ C

⇐⇒ z + c ∈ Ωc.

□

For simplicity, when looking at the 0 codeword we will drop the subscript and write

Ω := Ω0.

We will also abuse notation and write ∆Ω and hΩ to mean ∆1Ω
and h1Ω

respectively.
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Lemma 12. Consider any linear code C ⊆ Fn
q . Its corresponding decoding region Ω

satisfies

∆Ω ≥ dmin

q
− 3,

where dmin is the minimum distance of C.

Proof. Consider any z ∈ Fn
q with hΩ(z) ̸= 0. By definition, the following two conditions

must hold.

(i) D∗(z) = 0,
(ii) There exist a codeword c ∈ C and a coordinate i ∈ [n] such that D∗(zci) = c.

Our goal will be to show that there are at least dmin

q
− 3 choices of coordinates i where

zi = 0 and point (ii) above holds. We note that points (i) and (ii) imply that

d(z, 0) ≤ d(z, c) ≤ d(z, 0) + 2.(16)

By Lemma 10, we must then have∣∣supp(c) \ supp(z)∣∣ ≥ dmin

q
− 2.(17)

We now consider two separate cases, depending on the weight of z − c.
Case 1: d(z, c) ∈

{
d(z, 0), d(z, 0) + 1

}
. Then for every j ∈ supp(c) \ supp(z), we

have

d(zcj, c) = d(z, c)− 1

≤ d(z, 0)

= d(zcj, 0)− 1,

and thus zcj /∈ Ω. By equation 17, we thus have hΩ(z) ≥ dmin

q
− 2.

Case 2: d(z, c) = d(z, 0) + 2. Then for every j ∈ supp(c) \ supp(z), we have

d(zcj, c) = d(z, c)− 1

= d(z, 0) + 1

= d(zcj, 0).(18)

We want to show that for all but one choices of j ∈ supp(c) \ supp(z), we have

zcj − c ≺ zcj,

or equivalently that the support of zcj − c comes after the support of zcj in the
lexicographic order. We note that by point (ii) above, there exists a coordinate i ∈ [n]
such that supp(zci − c) comes after supp(zci) in the lexicographic order. But this
means that supp(z − c) must come after supp(z) in the lexicographic order. Define the
coordinate

j∗ := min
{
j ∈ supp(z − c) \ supp(z)

}
= min

{
j ∈ supp(c) \ supp(z)

}
,
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where the minimum is taken over the standard order 1 < 2 < 3 . . . < n. Then for any
coordinate j > j∗, supp(zcj − c) must come after supp(zcj) in the lexicographic order.
Combining this with equation (18), we get that for every coordinate j ∈ supp(c)\supp(z),
j ̸= j∗, we have

zcj − c ≺ zcj.

By equation (17), there are at least dmin

q
− 3 such coordinates. Thus we indeed have

hΩ(z) ≥
dmin

q
− 3.

□

Combining our results from Sections 3 and 4, we get the following bound on the
derivative of the decoding success probability.

Lemma 13. Consider any linear code C ⊆ Fn
q with minimum distance dmin ≥ 4q, and

any noise parameter p ∈ [0, 1]. The decoding region Ω for the code C satisfies

d

dp
Pr[z ∈ Ω] ≤ −1− p

4
·
√
dmin

q3/2
Pr[z ∈ Ω]

(
1− Pr[z ∈ Ω]

)
,

where all the probabilities are taken with respect to the q-ary p-biased distribution z ∼ p.

Proof. By definition, the decoding region Ω is monotone decreasing. By Lemma 9 and
Theorem 8, we then get

d

dp
Pr
z∼p

[z ∈ Ω] ≤ − 1

q − 1
E
z∼p

[hΩ(z)]

≤ − 1− p

2(q − 1)

√
∆Ω Pr

z∼p
[z ∈ Ω]

(
1− Pr

z∼p
[z ∈ Ω]

)
.

Applying Lemma 12, we must thus indeed have

d

dp
Pr[z ∈ Ω] ≤ − 1− p

2(q − 1)

√
dmin

q
− 3Pr[z ∈ Ω]

(
1− Pr[z ∈ Ω]

)
≤ −1− p

4
·
√
dmin

q3/2
Pr[z ∈ Ω]

(
1− Pr[z ∈ Ω]

)
.

□

We are now ready to prove our sharp transition result. For convenience, given a fixed
code C, we denote the probability of a decoding success by

g(p) := Pr
z∼p

[z ∈ Ω].

The theorem below shows that the function g transitions very rapidly from 1 to 0. In
spirit, it says that for any noise parameters p0 < p1 that aren’t extremely close to each
other, either g(p0) ≈ 1 or g(p1) ≈ 0.
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Theorem 14. Consider any linear code C ⊆ Fn
q with minimum distance dmin ≥ 4q,

and any noise parameters 0 ≤ p0 ≤ p1 ≤ 1. Then we have

g(p1)
(
1− g(p0)

)
≤ e

− 1−p1
4

·
√

dmin

q3/2
(p1−p0)

,

where dmin denotes the minimum distance of the code C.

Proof. Define the function

G(p) := ln
g(p)

1− g(p)
.

Then by Lemma 13, we have

dG

dp
=

1

g(p)
(
1− g(p)

) · dg
dp

≤ −1− p

4
·
√
dmin

q3/2
.

By the fundamental theorem of calculus, we then have

G(p0)−G(p1) = −
∫ p1

p0

dG

dp
dp

≥ 1− p1
4

·
√
dmin

q3/2

(
p1 − p0

)
.

By definition of G, we thus get

g(p1)
(
1− g(p0)

)
≤ g(p1)

1− g(p1)
· 1− g(p0)

g(p0)

= eG(p1)−G(p0)

≤ e
− 1−p1

4
·
√

dmin

q3/2
(p1−p0)

.

□

5. Proof of Main Results

In this section, we use our results from Section 4 to prove Theorems 1 and 2. We

first prove a generalization of Theorem 2 below. Taking δ = 4q3/2

(1−p)
√
dmin

ln(nL) in the

following theorem gives Theorem 2.

Theorem 15. Let C ⊆ Fn
q be a linear, (p, L)-list decodable code with minimum distance

dmin ≥ 4q. Then for any δ > 0 and any c ∈ C, we have

Pr
z∼p−n− 1

4−δ

[
D∗(c+ z) = c

]
≥ 1− 2Le

− 1−p
4

√
dmin

q3/2
δ
.



20 LIST-DECODING CAPACITY IMPLIES CAPACITY ON THE Q-ARY SYMMETRIC CHANNEL

Proof. Define the following decoder D : Fn
q → C. Upon seeing a message m ∈ Fn

q , the
decoder D finds all codewords c ∈ C that satisfy wt(m− c) ≤ pn, and outputs one of
them uniformly at random. The probability of success of this decoder under errors of
probability p− n− 1

4 is bounded by

Pr
z∼p−n− 1

4

[D(c+ z) = c] ≥ Pr
z∼p−n− 1

4

[wt(z) ≤ pn] Pr
z∼p−n− 1

4

[D(c+ z) = c
∣∣wt(z) ≤ pn]

≥ (1− e−2
√
n) · 1

L

≥ 1

2L
,

where in the second inequality we used Hoeffding’s inequality (Lemma 4) for the first
term, and the fact that C is (p, L)-decodable for the second term. Now by Fact 6, the
max-likelihood decoder D∗ can only have a better decoding probability than D, so we
have

Pr
z∼p−n− 1

4

[D∗(c+ z) = c] ≥ 1

2L
.(19)

By Theorem 14 and Claim 11, we then get

Pr
z∼p−n− 1

4−δ

[D∗(c+ z) = c] ≥ 1− 2Le
− 1−p

4
·
√

dmin

q3/2
δ
.

□

We then turn to proving Theorem 1 from Theorem 2.

Theorem 1. Let {Cn ⊆ Fn
q } be a family of linear codes with rate 1−hq(p), and suppose

{Cn} achieves list-decoding capacity. If dmin(Cn) = ω
(

q3

(1−p)2

)
, then {Cn} achieves

capacity over the q-ary symmetric channel.

Proof. By Definition 2, there exists a function ϵ(n) = o(1) such that each Cn is(
p− ϵn,

(1−p)2dmin

q3

)
-list decodable. Applying Theorem 15 with δ =

(
q3

(1−p)2dmin

) 1
4
= o(1),

we then get

Pr
z∼p−ϵn−n− 1

4−δ

[
D∗(c+ z) = c

]
≥ 1− 2(1− p)2dmin

q3
· e−

1
4

(
(1−p)2dmin

q3

) 1
4

≥ 1− o(1).

□

Acknowledgments

We thank Hervé Chabanne, Sivakanth Gopi, Anup Rao and Gilles Zémor for useful
discussions. The work of Francisco Pernice was supported in part by an MIT Jacobs
Presidential Fellowship. The work of Oscar Sprumont was supported in part by NSF
CCF-2131899, NSF CCF-1813135 and Anna Karlin’s Bill and Melinda Gates Endowed



LIST-DECODING CAPACITY IMPLIES CAPACITY ON THE Q-ARY SYMMETRIC CHANNEL 21

Chair. The work of Mary Wootters was supported in part by NSF CCF-2231157 and
CCF-2133154.

Appendix A. Erasure Channel

In this section, we recall and prove Theorem 3.

Theorem 3. Let C ⊆ Zn
q be a (p, L)-list decodable code with minimum distance ω(logL).

Then C admits reliable communication on the qECp′ for p′ = p− logn√
n
.

Proof. Fix any arbitrary sent codeword c ∈ C. For any erasure pattern z ∈ {0, 1}n, we
define the set of codewords that could be mistaken for c as

S(z) :=
{
c′ ∈ C : c|{i∈[n]:zi=0} = c′|{i∈[n]:zi=0}

}
.

Our goal will be to show that with high probability over the choice of z, c is the only
element in S(z). We first note that by Hoeffding’s inequality (Lemma 4), we have

Pr
z∼p− logn√

n

[wt(z) > pn] < e−2 log2 n

= o(1).(20)

We also note that by our assumption on the minimal distance of C, the probability
that any c′ ∈ C be in S(z) can be bounded by

Pr
z∼p− logn√

n

[c′ ∈ S(z)] = pwt(c+c′)

≤ p−ω(lognL)

≤ o(
1

L
).(21)

But since C is (p, L)-list decodable, there are at most L codewords c′ ∈ C satisfying
wt(c+ c′) ≤ pn. Combining equations (20) and 21) and applying the union bound, we
thus get

Pr
z∼p− logn√

n

[
|S(z)| > 1

]
≤ Pr

z∼p− logn√
n

[wt(z) > pn] +
∑

c′∈C:wt(c+c′)≤pn

Pr
z∼p− logn√

n

[c′ ∈ S(z)]

≤ o(1) + L · o( 1
L
)

≤ o(1).

□

Appendix B. Necessity of distance condition

We construct a linear code C ⊆ Fn
2 of small distance which achieves list-decoding

capacity but not q-SCp capacity. We start with a linear code C ′ ⊆ Fn
2 which is list-

decoding capacity achieving with list size L′ = L′
n. Then there is ϵ′ = ϵ′n = o(1) so that C ′

is (p−ϵ′n, L
′
n)-list decodable. Consider the code C = span{e1, C ′}, where (e1)i = 1 if i = 1

and (e1)i = 0 otherwise. Fix a z ∈ Fn
2 , and suppose C ′ ∩ B(p−2ϵ′)n+1(z) = {c1, . . . , ct}.
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Since (p − 2ϵ′)n + 1 < (p − ϵ′)n for all n large enough, we have t ≤ L for all n large
enough. But then C ∩ B(p−2ϵ′)n(z) ⊆ {c1, . . . , ct, c1 + e1, . . . , ct + e1}. Hence, setting
ϵ = 2ϵ′ and L = 2L′, we conclude that C also achieves list-decoding capacity.
However, it’s clear that C cannot achieve q-SC capacity. Indeed, if we send some

c ∈ C and the first bit gets corrupted, we can no longer distinguish between c and c+e1.
In other words, the probability of decoding error is bounded below by approximately p.

Appendix C. Discussion of the Proofs in [KCC10]

In this section, we discuss the proof of [KCC10] for the claim that the decoding
success probability of any q-ary linear code with large minimum distance transitions
rapidly from 1 − o(1) to o(1). As far as we can tell, the following two issues suggest
that their proof may not be complete. We thank Hervé Chabanne for useful discussions
on this subject.
The first issue is that the arguments of [KCC10] rely on the following definition

of monotonicity: a function f : Fn
q → {0, 1} is deemed monotone if whenever the

support of x ∈ Fn
q is a subset of the support of y ∈ Fn

q and f(x) = 1, then we must
also have f(y) = 1. This definition allows for an easier adaptation of F2 isoperimetric
inequalities, and the authors of [KCC10] prove sharp thresholds results for functions
that are monotone in this sense. They then claim that the non-decoding region of a
linear code C ⊆ Fn

q satisfies this version of monotonicity. Unfortunately, this is not
true. For instance, consider the case where q = 3 and our code is the span of the
all-1 vector. Then the error string x that has a 1 in the first n

2
+ 1 coordinates and 0

everywhere else leads to a decoding failure, while the error string y that has a 1 in the
first n

4
+ 1 coordinates, a 2 in the next n

4
+ 1 coordinates, and a 0 everywhere else leads

to a decoding success.
The second issue in [KCC10] has to do with the neighborhood of boundary points. A

critical part of their argument is their claim that any vector that is in the non-decoding
region U0 :=

{
x ∈ Fn

q : ∃c ∈ C \ {0} : d(x, c) ≤ d(x, 0)
}
and has at least one neighbor

outside of U0 must have at least d
2
such neighbors, where d is the minimum distance

of the code. This is true for q = 2, but it does not hold for larger alphabets. For
example, suppose we are working with a field Fq for some q ≥ n, and suppose our
code is again the span of the all-1 vector. Now suppose that the error string x is
x = (0, 1, 1, 2, 3, 4, . . . , n− 3, n− 2). This vector is in the non-decoding region U0, as it
is closer to the vector (1, 1, 1, ..., 1) than to the 0 vector. It also has a neighbor outside
of U0, for instance the vector (0, 0, 1, 2, 3, 4, 5, ..., n− 4, n− 3, n− 2). However it only
has 2 such neighbors: the ones obtained by setting the second coordinate or the third
coordinate of x to 0. Setting any other coordinate to 0 would yield a vector that is still
in U0, as it is equally far from the 0 vector and the all-1 vector.
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