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Abstract. We present an approach to showing that a linear code is resilient
to random errors. We use this approach to obtain decoding results for both

transitive and doubly transitive codes. We give three kinds of results about
linear codes in general, and transitive linear codes in particular.

1. We give a tight bound on the weight distribution of every transitive linear

code C ⊆ FN
2 :

Pr
c∈C

[wt(c) = αN ] ≤ 2−(1−h(α))dim(C).

2. We give a criterion that certifies that a linear code C can be decoded on the

binary symmetric channel. Let Ks(x) denote the Krawtchouk polynomial

of degree s, and let C⊥ denote the dual code of C. We show that bounds
on Ec∈C⊥ [KϵN (wt(c))2] imply that C recovers from errors on the binary

symmetric channel with parameter ϵ. Weaker bounds can be used to

obtain list-decoding results using similar methods. One consequence of
our criterion is that whenever the weight distribution of C⊥ is sufficiently

close to the binomial distribution in some interval around N
2
, C is resilient

to ϵ-errors.

3. We combine known estimates for the Krawtchouk polynomials with our

weight bound for transitive codes, and with known weight bounds for dou-
bly transitive codes, to obtain list-decoding results for both these families

of codes. In some regimes, our bounds for doubly transitive codes achieve

the information-theoretic optimal trade-off between rate and list size.

1. Introduction. In his seminal 1948 paper, Shannon laid out the bases of coding
theory and introduced the concept of channel capacity, which is the maximal rate at
which information can be transmitted over a communication channel [52]. The two
channels that have received the most attention are the Binary Symmetric Channel
(BSC), where each bit is independently flipped with some probability ϵ, and the
Binary Erasure Channel (BEC), where each bit is independently replaced by an
erasure symbol with some probability ϵ. Shannon’s work initiated a decades-long
search for explicit codes that can achieve high rates over a noisy channel.
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Explicit constructions of codes often have a lot of symmetry. In particular, many
known constructions of codes are transitive. The group of symmetries of a code
is the subgroup G of permutations π : {1, 2, . . . , N} → {1, 2, . . . , N} such that
permuting the coordinates of each of the codewords using π does not change the
code. A code is transitive if for every two coordinates i, j, there is a permutation
π ∈ G with π(i) = j. A code is doubly transitive if for every i ̸= k, j ̸= ℓ there is
a permutation π ∈ G with π(i) = j, π(k) = ℓ. Many known constructions of codes
are cyclic, and every cyclic code is transitive. Reed-Solomon codes, BCH codes and
Reed-Muller codes are all transitive. In addition, Reed-Muller codes and extended
primitive narrow-sense BCH codes are doubly transitive.

Using fundamental results from Fourier analysis about the influences of symmet-
ric boolean functions [29, 55, 14] has led to a very successful line of work, with
[38] showing that Reed-Muller codes achieve capacity over the BEC and [47, 2]
showing that they achieve capacity over the BSC. In fact, [38] show that for any
s > 1, if a linear code C ⊆ FN

2 of size |C| ≤ 2(1−ϵ)N has a doubly-transitive
symmetry group G such that for every S ⊆ {1, 2, . . . , N} with |S| = (s logN)0.99,
|{π(S) : π ∈ G}| ≥ Ns+1, then C can tolerate ϵ − O(1/s) fraction of random
erasures 1. Given these results, it is natural to investigate the types of symmetry
that lead to good codes. In this paper, we prove three kinds of results relevant to
understanding the error resilience of general linear codes, transitive linear codes,
and doubly transitive linear codes.

1. We give a clean and tight weight distribution bound for every transitive linear
code. We show that for any such code C ⊆ FN

2 ,

Pr
c∈C

[wt(c) = αN ] ≤ 2−(1−h(α))dim(C),

where wt(c) denotes the Hamming weight of the binary vector c. This bound
is proven by combining transitivity with the subadditivity of entropy. In some
regimes, it improves on all previously known weight bounds for Reed-Muller
codes (See Table 1 and Appendix A for a comparison of our weight bound
with previous results).

2. We give a new criterion to validate that a code can be decoded over the BSC.
For any fixed integers 0 ≤ s ≤ N , define the Krawtchouk polynomial of degree
s to be the real polynomial

Ks(x) :=

s∑
j=0

(−1)j
(
x

j

)(
N − x

s− j

)
,

where for any polynomial p(x) we abused notation to write(
p(x)
j

)
:= p(x)(p(x)−1)...(p(x)−j+1)

j! . Let C⊥ denote the dual code of C. In

spirit, our criterion says that any linear code C satisfying

E
c∈C⊥

[KϵN (wt(c))2] < (1 + o(N−1))

(
N

ϵN

)
can be uniquely decoded on the BSC with high probability. Our actual result
is a little more technically involved (see Theorem 1.2). This criterion implies
that any linear code whose dual codewords are distributed sufficiently close
to the binomial distribution must be resilient to ϵ-errors (see Corollary 1.3).

1Their result is not stated in this form, but we believe this follows from their analysis.
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Moreover, if the above expectation is bounded by o(k
(
N
ϵN

)
), then we prove

that the code can be list-decoded with a list size of about k.
3. Finally, we combine known estimates for the Krawtchouk polynomials with

our weight bound for transitive codes, and with known weight bounds for
doubly transitive codes, to obtain list-decoding results for both families of
codes. In some regimes, our bounds for doubly transitive codes achieve the
information-theoretic optimal trade-off between rate and list size.

Next, we discuss our results more rigorously. Throughout this section, for any
set X we denote the uniform distribution over X by D(X).

I. weight bounds for transitive codes
We bound the weight distribution of any transitive linear code over any finite field.
See section 6 for the proof.

Theorem 1.1. Consider any finite field Fq, and let C ⊆ FN
q be any transitive linear

code. Then for any α ∈ (0, 1), we have

Pr
c∼D(C)

[
wt(c) = αN

]
≤ q−(1−hq(α))dim C ,

where D(C) is the uniform distribution over all codewords in C, wt(c) is the number
of non-zero coordinates of c, and hq is the q-ary entropy

hq(α) := (1− α) logq
1

1− α
+ α logq

q − 1

α
.

Note that h2(α) denotes the binary entropy function. We note that in some
regimes (see Table 1), the bound above improves on all previously proven weight
distribution bounds for Reed-Muller codes, even though the only feature of the code
that we use is transitivity. See Appendix A for a comparison of our Theorem 1.1
with previous weight bounds.

II. a criterion for decoding on the BSC
We develop a new approach for proving decoding results over the BSC, i.e. the
communication channel whose errors z ∈ FN

2 are sampled from the ϵ-noisy distri-
bution

Pϵ(z) := ϵwt(z)(1− ϵ)N−wt(z)

for some ϵ ∈ (0, 1
2 ). Our approach is based on Fourier analysis, although unlike

[38] and [25], the ideas we use do not rely on bounds on influences. We obtain the
following result.

Theorem 1.2. Let C ⊆ FN
2 be any linear code, and denote by C⊥ ⊆ FN

2 its dual
code. Then for any ϵ ∈ (0, 1

2 ) satisfying N > 1
ϵ4( 1

2−ϵ)4
, there exists a decoding

function d : FN
2 → C such that for all c ∈ C we have

Pr
ρ∼Pϵ

[d(c+ ρ) ̸= c] ≤ 2e−
√

N
3ϵ +N max

S⊆[ϵN±N3/4]∩N
1≤|S|≤2

{ 1(
N
S

) E
c∼D(C⊥)

[
KS(wt(c))

2
]
− 1

}
,

where
(
N
S

)
:=

∑
j∈S

(
N
j

)
, and KS(x) :=

∑
j∈S Kj(x) for Kj the Krawtchouk polyno-

mial of degree j, and where [ϵN±N3/4] denotes the interval [ϵN−N3/4, ϵN+N3/4].
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See section 5 (Theorem 5.2) for the proof. We will now consider one interesting
consequence of Theorem 1.2. Let ϵ ∈ (0, 1

2 ) be arbitrary, and define

Aϵ := {αN ∈ N : h(α) > 1− h(ϵ)−N−1/5}.
Our next corollary states that whenever the dual codewords of C are distributed
sufficiently close to the binomial distribution for all weights in Aϵ, the code C must
be resilient to ϵ-errors. See Appendix B for the proof.

Corollary 1.3. Let ϵ ∈ (0, 1
2 ) be arbitrary, and let C ⊆ FN

2 be a linear code.
Suppose that for every j ∈ Aϵ we have

Pr
y∼D(C⊥)

[
wt(y) = j

]
≤

(
1 + o(N−1)

)(Nj )
2N

,

and suppose that

Pr
y∼D(C⊥)

[
wt(y) /∈ Aϵ

]
≤ 2N

3
4 ·

∑
i/∈Aϵ

(
N
i

)
2N

.

Then C is resilient to ϵ-errors.

As a proof of concept, we note that a uniformly random linear code of dimension
(1−h(ϵ))N−

√
N satisfies all these conditions simultaneously with high probability.

III. list decoding results
Using a generalized version of Theorem 1.2 (namely, Theorem 5.2 in section 5), we
obtain list decoding bounds for both transitive and doubly transitive codes. We
start with our bound for doubly transitive codes (see Section 8 for the proof).

Theorem 1.4. Fix any ϵ ∈ (0, 1
2 ) and any γ ≤ 1 − log(1 + 2−4ϵ) . Then any

doubly transitive linear code C ⊆ FN
2 of dimension dim C = (1−γ)N can with high

probability list-decode ϵ-errors using a list T of size

|T | = 2h(ϵ)N−γN+o(N).

Although our lists have exponential size, the list size is non-trivial in the sense
that it is much smaller than the number of noise vectors (which is about

(
N
ϵN

)
≈

2h(ϵ)N ) and the number of codewords in the code (which is 2dim C = 2(1−γ)N ). In
fact, a standard calculation (see Appendix C) shows that any code C ⊆ FN

2 of
dimension (1−γ)N that can successfully list-decode errors of probability ϵ with list
size |T | must satisfy

|T | ≳ 2(h(ϵ)−γ)N . (1)

Our bound in Theorem 1.4 shows that doubly transitive codes achieve these optimal
parameters, at least in some regimes. (Since the requirement γ ≤ 1− log(1 + 2−4ϵ)
can be a bit hard to digest, we note for e.g. that 1.3ϵ < 1 − log(1 + 2−4ϵ) for all
ϵ ∈ (0, 1

2 ), so Theorem 1.4 implies that any doubly transitive code of rate ≥ 1−1.3ϵ
achieves the optimal list size for decoding ϵ-errors). We now turn to our list-decoding
bound for transitive codes (see section 7 for the proof).

Theorem 1.5. Fix any ϵ ∈ (0, 1
2 ) and η ∈ (0, 1). Then any transitive linear code

C ⊆ FN
2 of dimension dim C = ηN can with high probability list-decode ϵ-errors

using a list T of size

|T | = 2ϵN log( 2
1−η )+o(N) + 24ϵN+o(N).
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As an explicit example of the types of bounds one gets from Theorem 1.5, we
have that any transitive linear code of dimension dim C = (1− 4ϵ

e )N can with high
probability list-decode ϵ-errors using a list T of size

|T | = 2(h(ϵ)−ϵ+ ϵ2

ln 2 )N+o(N) + 24ϵN+o(N). (2)

See Appendix D.1 for the calculations. For comparison, recall that the lower bound
(1) states that any code C of dimension (1 − 4ϵ

e )N requires a list size of at least

about 2(h(ϵ)−
4ϵ
e )N .

1.1. Techniques. Our weight distribution bound for transitive linear codes (The-
orem 1.1) is proven by showing that the entropy of a uniformly random codeword
of weight αN is small. To do this, we analyze the entropy of the coordinates cor-
responding to linearly independent columns of the generator matrix. Transitivity
implies that every coordinate in the code has the same entropy, and subadditivity
of entropy can then be used to bound the entropy of the entire distribution.

To obtain our decoding criterion, we make use of a connection between the prob-
ability of a decoding error and the ℓ2 norm of the coset distribution of the code. To
explain the intuition, let us start by assuming that exactly ϵN of the coordinates in
the codeword are flipped, although our results actually hold over the BSC as well.
Let z be the vector in FN

2 that represents the errors introduced by the channel,
and let H be the parity check matrix of the code. Then by standard arguments,
if z can be recovered from Hz⊺, the codeword can be decoded. In the case where
z is uniformly distributed on vectors of weight ϵN , this amounts to showing that
with high probability, the coset of z does not contain any other string of weight
ϵN (in other words, there is no w ∈ FN

2 , w ̸= z of weight wt(w) = ϵN such that
Hz⊺ = Hw⊺). This can be understood by computing the norm

∥f∥22 :=
∑
y

f(y)2 =
∑
y

Pr[Hz⊺ = y⊺]2,

where f(y) = Pr[Hz⊺ = y⊺]. This norm computes the probability that two inde-
pendent, uniformly random strings z, z′ of weight ϵN collide under the mapping

z 7→ Hz⊺. Thus ∥f∥22 is always at least
(
N
ϵN

)−1
, because with probability

(
N
ϵN

)−1

we have z = z′. If ∥f∥22 is close to
(
N
ϵN

)−1
, then the code can be decoded with

high probability. If ∥f∥22 is larger than
(
N
ϵN

)−1
, then we show that the code can

be list-decoded with high probability, where the size of the list is proportional to(
N
ϵN

)
∥f∥22.

Thus, to understand decoding, we need to understand ∥f∥22. Using Fourier anal-
ysis, we express this quantity as

∥f∥22 =
1(
N
ϵN

)2 N∑
j=0

Pr[wt(c⊥) = j] ·KϵN (j)2, (3)

where c⊥ is a uniformly random codeword in the dual code andKϵN is the Krawtchouk

polynomial of degree ϵN . We note that such relations for the coset weight distribu-
tion have been used to understand the discrepancy of subsets of the sphere, as well
as subsets of other homogeneous spaces. In particular, (3) was proven in a slightly
different form in [9] (see Theorem 2.1 and Lemma 4.1), whereas over RN results of
this type had previously been derived in [12, 53].
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Using estimates for the magnitude of Krawtchouk polynomials and bounds for
the weight distribution of the dual code C⊥, one can thus bound the norm ∥f∥22 in
the set-up where the error string z is a random vector of weight exactly ϵN . Using
essentially the same techniques, one can also bound the norm ∥f∥22 when the error
string z is a random vector of weight ≈ ϵN , i.e. z is taken uniformly at random
from the set S = {x ∈ FN

2 : wt(x) = ϵN ±N3/4}.
Our next step is then to show that the ℓ2 norm corresponding to the ϵ-noisy

distribution is very similar to the ℓ2 norm corresponding to the uniform distribution
over S. Intuitively, this is because S only contains a very small range of weights,
so the ϵ-noisy distribution and the uniform distribution must behave very similarly
over strings of weight in S. It then follows that their corresponding ℓ2 norms must
be similar as well.

Our decoding criteria (Theorem 1.2, Corollary 1.3) are thus obtained by bounding
the norm ∥f∥22 using estimates for Krawtchouk polynomials and for the weight
distribution of the dual code C⊥. Our list-decoding results (Theorems 1.4 and 1.5)
then follow from our weight bound for transitive codes (Theorem 1.1) and from a
weight bound of Samorodnitsky for doubly transitive codes (Theorem 1.6).

1.2. Related work. It has been shown that LDPC codes achieve capacity over
Binary Memoryless Symmetric Channels (BMS) [42, 39, 18], which includes both
the BSC and the BEC. These constructions are not deterministic, and it is only
with the advent of polar codes [7] that we obtained capacity-achieving codes with
both a deterministic constructions and efficient encoding and decoding algorithms.

Polar codes are closely related to Reed-Muller codes, in the sense that they also
consist of subspaces that correspond to polynomials over F2 [7]. For this reason,
when Arikan showed that polar codes achieve capacity over the BSC, Reed-Muller
codes received renewed attention from the coding theory community. A long and
fruitful line of work [4, 38, 6, 25, 1, 47, 50] has recently culminated in Abbe and
Sandon showing that Reed-Muller codes achieve capacity over all BMS channels [2].

One of the key properties of Reed-Muller codes, which is strongly leveraged in
all the papers above, is that they are doubly transitive. In fact, Kudekar, Kumar,
Mondelli, Pfister, Sasoglu and Urbanke showed that any doubly transitive linear
code achieves bit-decoding capacity over the BEC [38], i.e. that one can with high
probability recover any single bit of the original codeword (but not with high enough
probability that one could take a union bound). An important open question is thus
whether general doubly transitive codes achieve capacity over all BMS channels
under block-MAP decoding, or whether one really needs the additional symmetry
that Reed-Muller codes possess. Some of the key techniques used in [47] and [2]
are very much tailored to Reed-Muller codes, or at least to codes consisting of
evaluations of polynomials over FN

2 ; in order to prove the same results for arbitrary
doubly transitive codes, it may be necessary to develop a more general framework.

Weight bounds for doubly transitive codes
As far as we know, there were no previously known weight bound for general transi-
tive linear codes. There are however two known weight bounds for doubly transitive
codes (which we’ll give here), as well as many known weight bounds for Reed-Muller
codes (which we’ll discuss in the next section). We compare all these results in Ap-
pendix A. We state below the weight bounds of Samorodnitsky, which to the best of
our knowledge are the only previously known weight bounds for doubly transitive
codes.
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Table 1. Best known upper bounds on the number of codewords of weight w in RM(n, d)

o(n) ≤ d ≲≲≲ 0.38n 0.38n ≲≲≲ d ≤ n
2
− Ω̃(

√
n) d = n

2
± Õ(

√
n)

o(N) ≤ w < τN* 2
O
(
( n
≤d)(

d
n
)
⌈log N

w
⌉
log N

w

)
[51] ← as previous

(
1

2
1−( n

≤d)/N−1

)w+o(N)

[48]**

τN ≤ w < N
4

2
h( w

N
)( n

≤d) (Theorem 1.1) ← as previous as above ↑

N
4

≤ w ≤ N
2

− o(N) 2
(1−2

−O(log N
w

)
)( n

≤d)[51] 2
h( w

N
)( n

≤d) (Theorem 1.1) as above ↑

(1− 2(
n

≤d)/N−1
)N ≤ w ≤ N

2

(
N
w

)
· 2(

n
≤d)−N+o(N)

[48]

*τ is a threshold that depends on d
n
. See (4) and the surrounding discussion.

**Unless w ≥ (1− 2
( n
≤d)
N

−1)N , in which case see row below dashed line.

Theorem 1.6 (Proposition 1.4 in [48]). Let C ⊆ FN
2 be a doubly transitive linear

code of rate η := dim C
N . For any j ∈ {1, 2, . . . , N}, define j∗ := min{j,N − j}.

Then for any j ∈ {1, 2, . . . , N},∣∣∣{c ∈ C : wt(c) = j
}∣∣∣ ≤ 2o(N) ·

(
1

21−η − 1

)j∗

.

Moreover, if j∗ ≥ (1− 2η−1)N ,∣∣∣{c ∈ C : wt(c) = j
}∣∣∣ ≤ 2o(N) ·

(
N
j∗

)
|C|

2N
.

Weight bounds for reed-muller codes
As we mentioned earlier, one specific family of doubly transitive codes that has
received a lot of attention is the family of Reed-Muller codes. Several past works
have proven bounds on their weight distribution. We give here a brief history of
these results, although for space reasons (there are over 10 different weight bounds),
we will not state them here. We delve deeper into some prior results in Appendix
A, where we compare them to our weight bound of Theorem 1.1. We also refer the
reader to [5, 3] for a discussion on the subject, as well as a thorough exposition to
Reed-Muller codes.

The earliest work we are aware of is that of Sloane and Berlekamp, who charac-
terized all codewords in Reed-Muller codes of degree 2 [54]. For arbitrary degree,
Kasami and Tokura then characterized all codewords of weight smaller than twice
the minimum distance [31], before Kasami, Tokura and Azumi improved this char-
acterization to include all codewords of weight up to 2.5 times the minimum distance
[32].

A few decades later, Kaufman, Lovett and Porat gave asymptotically tight
bounds on the weight distribution of Reed-Muller codes of constant degree [33].
Abbe, Shpilka and Wigderson then built on these techniques to obtain bounds for
all degrees smaller than n

4 [4], before Sberlo and Shpilka again improved the ap-
proach to obtain bounds for all degrees [51]. Most recently, Samorodnitsky used
completely different ideas to obtain weight bounds for codes of constant rate [49, 48]
(see previous section).
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The bounds mentioned above are strong when j/N ≪ 1/2. For j/N close to
1/2, the first results we are aware of are due to Ben-Eliezer, Hod and Lovett [11].
Their bounds were extended to Reed-Muller codes over prime fields by Beame,
Oveis Gharan and Yang [10]. Sberlo and Shpilka then obtained the first results to
hold for all degrees in [51], while Samorodnitsky again obtained bounds for codes
of constant rate in [48].

We summarize in Table 1 the best known upper bounds on the weight distribution
of Reed-Muller codes. We note that in some regimes, our Theorem 1.1 improves on
all the aforementioned weight bounds. See Appendix A for some details; see also
[3], section 4.

In Table 1, τ is a threshold that depends on d
n . We show for e.g. that

τ ≤ 1

2
· 2−

log 17
log n

2d (4)

in Appendix A, which is below the trivial 1
4 for any d

n > 1
34 . We note that when d

n

is small enough (smaller than some constant), then τ = 1
4 .

List decoding
List decoding was proposed by Elias in 1957 as an alternative to unique decoding
[17]. In the list decoding framework, the receiver of a corrupted codeword is asked to
output a list of potential codewords, with the guarantee that with high probability
one of these codewords is the original one. This of course allows for a greater
fraction of errors to be tolerated.

The list decoding community has largely focused on proving results for the adver-
sarial noise model, and many codes are now known to achieve list-decoding capacity.
For example uniformly random codes achieve capacity, as do uniformly random lin-
ear codes [21, 40, 20]. Folded Reed-Solomon codes were the first explicit codes to
provably achieve list-decoding capacity [22], followed by several others a few years
later [23, 34, 26, 45, 15]. For the rest of this paper however, we will exclusively work
in the model where the errors are stochastic. In this model, as far as we know, there
was no known list-decoding bound for transitive codes prior to our Theorem 1.5.
For doubly transitive codes, the strongest previously known list decoding bound
was, to the best of our knowledge, that any doubly transitive code C ⊆ FN

2 of
dimension dim C = (1− γ)N can list-decode ϵ-errors with a list T of size

|T | = 2
ϵN log

4ϵ(1−ϵ)

(2γ−1)2
+o(N)

. (5)

This result, although not explicitly stated in [48], can be obtained from his weight
bound of Theorem 1.6 by bounding the expected number of codewords that end up
closer to the received string than the original codeword, and then applying Markov’s
inequality. We summarize in Table 2 our list-decoding results and compare them
to previous work. We note that the previously known bound for doubly transitive
codes stays strictly above the optimal size of 2h(ϵ)N−γN±o(N) (see Appendix D.3).

Following the publication of the present paper on arxiv, Hazla showed in [24]
that any code C ⊆ FN

2 of dimension dim C = (1 − γ)N ≥ (1 − 4ϵ(1 − ϵ))N that
achieves capacity over the BEC can list-decode ϵ-errors with a list T of size

|T | = 2γN−h(ϵ)N+o(N).
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Table 2. Upper bounds on the list size needed for a code of rate 1− γ to recover from ϵ-errors

Previous work Our results
Information-theoretic

lower bound

Transitive codes
(any γ)

- 2
ϵN log( 2

γ
)+o(N)

+ 24ϵN+o(N) 2h(ϵ)N−γN−o(N)

Doubly transitive codes
(any γ ≤ 1− log(1 + 2−4ϵ))

2
ϵN log

4ϵ(1−ϵ)

(2γ−1)2
+o(N)

2h(ϵ)N−γN+o(N) 2h(ϵ)N−γN−o(N)

Krawtchouk polynomials
Fix any non-negative integers N and s ≤ N . The Krawtchouk polynomial of degree
s is the real polynomial

Ks(x) :=

s∑
j=0

(−1)j
(
x

j

)(
N − x

s− j

)
,

where for any polynomial p(x) we defined
(
p(x)
j

)
:= p(x)(p(x)−1)...(p(x)−j+1)

j! . For

any subset S ⊆ {0, 1, . . . , N}, we will be interested in the polynomial KS(x) :=∑
s∈S Ks(x). For v ∈ FN

2 , we will sometimes abuse notation and use KS(v) to
mean KS(wt(v)), where wt(v) denotes the Hamming weight of v. The following
proposition follows from standard results (see for instance [37], or Theorem 16 in
[44]).

Proposition 1.7. For any N and any S ⊆ {0, 1, . . . , N}, we have

2−N∑
s∈S

(
N
s

) N∑
j=0

(
N

j

)
KS(j)

2 = 1.

Good estimates for Krawtchouk polynomials of any degree were obtained in [30,
27, 46] (see for e.g. [46], Lemma 2.1). These estimates are asymptotically tight in
the exponent. Note that |Ks(x)| = |Ks(N − x)| = |KN−s(x)| by symmetry (see for
e.g. equations (2.8) and (2.9) in [46]), so it suffices to understand the case x, s ≤ N

2 .

Theorem 1.8 ([30, 27, 46]). Let ϵ, δ ∈ (0, 1
2 ) be arbitrary. If δ ≥ 1

2 −
√
ϵ(1− ϵ),

then

|KϵN (δN)| ≤ 2(1+h(ϵ)−h(δ))N
2 .

If δ < 1
2 −

√
ϵ(1− ϵ), define ω :=

1−2δ−sgn(1−2δ)
√

(1−2δ)2−4ϵ(1−ϵ)

2(1−2δ) . Then

|KϵN (δN)| ≤ (1− ω)δN (1 + ω)(1−δ)N

ωϵN
.

As the second expression can be somewhat cumbersome to use, [46] also gives
the following weaker bound.

Theorem 1.9 (Lemma 2.2 and equation 2.10 in [46]). For any ϵ ∈ (0, 1
2 ) and any

δ < 1
2 −

√
ϵ(1− ϵ), we have

|KϵN (δN)| ≤ 2h(ϵ)N+ϵN log(1−2δ).
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We will need the above estimate when using our Theorem 1.2 to obtain list-
decoding results for transitive and doubly transitive codes.

Relations between a code and its dual
Several connections have been established between the properties of a code C ⊆ FN

2

and those of its dual C⊥. MacWilliams proved in [43] the MacWilliams identities,
relating the weight distributions of C and C⊥ by∑

c∈C

(1 + z)N−wt(c)(1− z)wt(c) = |C|
∑
c∈C⊥

zwt(c),

where z is an indeterminate. Krasikov and Litsyn then bounded the weight distribu-
tion of any linear code with large dual distance [35, 36], while Ashikhmin, Honkala,
Laihonen and Litsyn derived bounds for the covering radius of any such code [8].
To the best of our knowledge however, the present paper is the first work to relate
the decoding performance of a code C ⊆ FN

2 to the weight distribution of its dual.
As far as we know, there is no known way to apply the results mentioned above to
obtain a unique-decoding criterion like our Theorem 1.2 or our Corollary 1.3.

2. Outline of the paper. The main question we will be looking into is whether
or not a family of list-decoding codes {CN}, with CN ⊆ FN

2 , is asymptotically
resilient to independent errors of probability ϵ. Formally, we are given a list size
k = k(N) and want to know if there exists a family of decoding functions {dN},
with dN : FN

2 →
(
FN
2

)⊗k
, such that for every sequence of codewords {cN} we have

lim
N→∞

Pr
ρN∼Pϵ

[
cN /∈ dN (cN + ρN )

]
= 0.

We note that the unique decoding problem can be seen as setting k = 1 in the
above set-up. Our general approach will be based on trying to identify the error
string ρ ∈ FN

2 from its image Hρ⊺. In particular, we will be interested in the
max-likelihood decoder

Dk(x) := argmax
{z1,z2...,zk}⊆FN

2
Hzi

⊺=x⊺ for all i

{Pϵ(z1) + Pϵ(z2) + . . .+ Pϵ(zk)}

= argmin
{z1,z2...,zk}⊆FN

2

Hz⊺
i =x⊺ for all i

{wt(z1) + wt(z2) + . . .+wt(zk)}, (6)

where ties are broken according to the lexicographic order. The following standard
lemma (see for e.g. page 17, Theorem 5 in [44]) states that if the max-likelihood
decoder is able to identify the error string ρ, then it is possible to recover the original
codeword.

Lemma 2.1. Let H be the t×N parity-check matrix of the linear code C, and let

D : Ft
2 →

(
FN
2

)⊗k
be arbitrary. Then there exists a decoder

d : FN
2 → C⊗k

such that for every c ∈ C we have

Pr
ρ∼Pϵ

[c /∈ d(c+ ρ)] ≤ Pr
ρ∼Pϵ

[ρ /∈ D(Hρ⊺)].

From this point onward, our goal will thus be to prove that the max-likelihood
decoder in (6) succeeds in recovering ρ with high probability. In section 4, we relate
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Figure 1. Organization of our paper and connections between our
results.

the decoding error probability of the max-likelihood decoder Dk to the collision
probability ∑

x∈Ft
2

Pr[Hz⊺ = x⊺]2.

In section 5, we build on this result to obtain a bound on the performance of
Dk in terms of the weight distribution of the dual code. We then present new
bounds on the weight distribution of transitive codes in section 6. These bounds
are interesting in their own right, and we show that they are essentially tight. In
section 7, we combine these bounds with our results from section 5 to obtain list-
decoding results for transitive linear codes. We then repeat this argument with
Samorodnitsky’s Theorem 1.6 in section 8 to obtain stronger list-decoding bounds
for doubly transitive codes.

See Figure 1 for a description of the connections between our various propositions
and theorems.

3. Notation, conventions and preliminaries. For the sake of conciseness, we
will use the notation

[a± l] := [a− l, a+ l]

for intervals, the notation(
n

≤ d

)
:=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

d

)
for binomial coefficients, and for S ⊆ {0, 1, . . . , N} the notation(

N

S

)
:=

∑
s∈S

(
N

s

)
.
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We denote the set of all non-negative integers by

N := {0, 1, 2, . . . }.
LetN = 2n. We will be working with the vector spaces Fn

2 and FN
2 . For convenience,

we associate Fn
2 with the set [N ] := {1, 2, . . . , N}, by ordering the elements of Fn

2

lexicographically. For x ∈ FN
2 , we write

wt(x) := |{j ∈ [N ] : xj = 1}|
to denote the Hamming weight of x.

3.1. Coding theory definitions and terminology. An N -bit code is a subset
C ⊆ FN

2 , and we call any element c ∈ C a codeword of C. Throughout the paper,
we will use N to denote the length of the code, i.e. the number of bits in any given
codeword.

We will be interested in the performance of various codes over the so-called Binary
Symmetric Channel (BSC for short). When a codeword c ∈ C is sent through the
Binary Symmetric Channel, each one of its bits is flipped independently at random
with probability ϵ, for some ϵ ∈ (0, 1

2 ). Throughout the paper, we will use ϵ to
denote this error probability, and we will use ρ to denote the vector (ρ1, ρ2, . . . , ρN )
whose ith coordinate is 1 with probability ϵ and 0 with probability 1 − ϵ, for all
i ∈ {1, 2, . . . N}. We will call the original codeword c ∈ C the transmitted codeword,
we will call the noisy vector ρ the error string, and we will call c + ρ the received
message.

We say that the code C is resilient to ϵ-errors if there exists a decoding function
d : FN

2 → C such that for every c ∈ C, with high probability over the choice of an
ϵ-noisy error string ρ we have

d(c+ ρ) = c.

We will also be interested in the performance of a code with respect to list decoding.
In this set-up, the decoder is now a function d : FN

2 → C⊗k. We say that a code C
can list-decode ϵ-errors with a list size of k if with high probability (again, over the
choice of an ϵ-noisy error string ρ), we have

c ∈ d(c+ ρ).

Throughout the paper, we will denote by k the size of the list. We note that the
unique decoding problem can be seen as setting k = 1 in the list decoding set-up.

3.2. Linear codes. An N -bit code is a subset C ⊆ FN
2 . Whenever C is a subspace

of FN
2 , we say that C is a linear code. Any linear code C ⊆ FN

2 can be represented
by its generator matrix, which is a dim C ×N matrix G whose rows form a basis
of C. The matrix G generates all codewords of C in the sense that

C = {vG : v ∈ Fdim C
2 }.

Another useful way to describe a linear code C ⊆ FN
2 is via its parity-check matrix,

which is an (N−dim C)×N matrix H whose rows span the orthogonal complement
of C. The linear code C can then be expressed as

C = {c ∈ FN
2 : Hc⊺ = 0}.

One property that will play an important role in our analysis is transitivity, which
we define below.

Definition 3.1. A code C ⊆ FN
2 is transitive if for every i, j ∈ [N ] there exists a

permutation π : [N ] → [N ] such that
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(i) π(i) = j
(ii) For every element v = (v1, v2, . . . , vN ) ∈ C we have (vπ(1), vπ(2), . . . , vπ(N)) ∈

C.

Many well-known and widely used codes are transitive, for e.g. Reed-Muller
codes, Reed-Solomon codes, general BCH codes, and all cyclic codes. In addition,
Reed-Muller codes and extended primitive narrow-sense BCH codes are doubly
transitive.

Definition 3.2. A code C ⊆ FN
2 is doubly transitive if for every i, j, k, ℓ ∈ [N ] with

i ̸= k and j ̸= ℓ, there exists a permutation π : [N ] → [N ] such that

(i) π(i) = j and π(k) = ℓ
(ii) For every element v = (v1, v2, . . . , vN ) ∈ C we have (vπ(1), vπ(2), . . . , vπ(N)) ∈

C.

For a review on doubly transitive codes, see [28] We note that the dual code of
a transitive code is transitive, and that the dual code of a doubly transitive code is
doubly transitive (see Appendix D.2 for the proof).

Claim 3.3. The dual code C⊥ of a transitive code C ⊆ FN
2 is transitive.

Claim 3.4. The dual code C⊥ of a doubly transitive code C ⊆ FN
2 is doubly tran-

sitive.

3.3. Reed-muller codes. We will denote by RM(n, d) the Reed-Muller code with
n variables and degree d. The codewords of the Reed-Muller code RM(n, d) are the
evaluation vectors (over all points in Fn

2 ) of all multivariate polynomials of degree
≤ d in n variables. The dimension of the code is known to be

(
n
≤d

)
. (See for e.g.

page 5 of [5]).

Fact 3.5. The dimension of the Reed-Muller code RM(n, d) is

dim
(
RM(n, d)

)
=

(
n

≤ d

)
.

Throughout this section, we let M be the generator matrix of RM(n, d); this is
an

(
n
≤d

)
×N matrix whose rows are indexed by subsets of [N ] of size at most d, and

whose columns are indexed by elements of Fn
2 . For S ⊆ [n], |S| ≤ d and x ∈ Fn

2 , the
entry of M whose row is indexed by S and whose column is indexed by x is

MS,x :=
∏
j∈S

xj .

If S is empty, this entry is set to 1. The parity-check matrix of the Reed-Muller code
is known to be the same as the generator matrix of a different Reed-Muller code.
Namely, let H be the

(
n

≤n−d−1

)
×N generator matrix for the code RM(n, n−d−1).

Then H has full rank, and MH⊺ = 0. So, the rows of H are a basis for the
orthogonal complement of the span of the rows of M . Reed-Muller codes also have
well-known algebraic features, notably transitivity (see for e.g. Lemma 23 in [38]).

Fact 3.6. For all non-negative integers n and d ≤ n, the Reed-Muller code RM(n, d)
is transitive.
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3.4. Entropy. The binary entropy function h : [0, 1] → [0, 1] is defined to be

h(ϵ) := ϵ · log 1

ϵ
+ (1− ϵ) · log 1

1− ϵ
.

One useful property of the binary entropy function is that it is subadditive.

Lemma 3.7. For any x ∈ [0, 1] and any y ∈ [0, 1− x], we have

h(x+ y) ≤ h(x) + h(y).

This is because the binary entropy function is concave, and any concave, positive
function is subadditive (see for e.g. [41], page 83, statement 103). The entropy
function can be used to approximate binomial coefficients.

Lemma 3.8. For any integer d ∈ {1, 2, . . . , n
2 }, we have

1√
2n

· 2h(d/n)·n ≤
(
n

d

)
≤

(
n

≤ d

)
≤ 2h(d/n)·n.

See for e.g. page 309, Lemma 7 in [44] for the proof of the leftmost inequality,
and Theorem 3.1 in [19] for the proof of the rightmost inequality.

The following lemma, which is essentially a 2-way version of Pinsker’s inequality,
gives a useful way to bound the entropy function near 1/2.

Lemma 3.9. For any µ ∈ (0, 1), we have

µ2

2 ln 2
≤ 1− h

(
1− µ

2

)
≤ µ2.

See Appendix D.4 for the proof.

3.5. Probability distributions. There are two types of probability distributions
that we will use frequently. The first one is the ϵ-Bernoulli distribution over FN

2 ,
which we will denote by

Pϵ(z) := ϵwt(z)(1− ϵ)N−wt(z).

The second one is the uniformly random distribution over some set T , which we
will denote by

D(T )(z) :=

{
1
|T | if z ∈ T ,

0 otherwise.
.

There are two particular cases for the uniform distribution that will occur often
enough that we attribute them their own notation. The first one is the uniform
distribution over Ft

2, which we will denote by

µt := D(Ft
2).

The second one is the uniform distribution over all vectors z ∈ FN
2 of weight wt(z) ∈

S, for some S ⊆ {0, 1, . . . , N}. We will denote this probability distribution by

λS := D({z ∈ FN
2 : wt(z) ∈ S}).
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3.6. Probability theory. We will need two very standard results of probability
theory (see for e.g. [13]): Markov’s inequality and Chernoff’s bound. We start with
Markov’s inequality.

Lemma 3.10. Let X be a non-negative random variable. Then for any a > 0, we
have

Pr[X ≥ a] ≤ E[X]

a
.

We will also need Chernoff’s bound:

Lemma 3.11. Let X1, X2, . . . , Xm be i.i.d. random variables taking values in
{0, 1}, and define X := X1 +X2 + . . .+Xm. Then for any δ ∈ (0, 1), we have

Pr
[∣∣X − E[X]

∣∣ > δ ·mE[X1]
]
≤ 2e−

δ2·m E[X1]
3 .

3.7. Fourier analysis. The Fourier basis is a useful basis for the space of functions
mapping FN

2 to the real numbers. We recall some of its properties below (see for
e.g. [16]). For f, g ∈ FN

2 → R, define the inner product

⟨f, g⟩ := 1

2N

∑
x∈FN

2

f(x)g(x).

For every x, y ∈ FN
2 , define the character

χy(x) := (−1)
∑N

j=1 xjyj .

These functions form an orthonormal basis, namely for y, y′ ∈ FN
2 ,

⟨χy, χy′⟩ =

{
1 if y = y′,

0 otherwise.

We define the Fourier coefficients f̂(y) := ⟨f, χy⟩. Then for f, g : FN
2 → R, we have

⟨f, g⟩ =
∑
y∈FN

2

f̂(y) · ĝ(y).

In particular,
1

2N

∑
x∈FN

2

f(x)2 =
∑
y∈FN

2

f̂(y)2.

4. Collisions vs decoding. Recall that we denote by Pϵ the ϵ-Bernoulli distribu-
tion over FN

2 , i.e. the distribution

Pϵ(z) := ϵwt(z)(1− ϵ)N−wt(z).

Recall also that for any subset S ⊆ {0, 1, . . . , N}, we denote by λS the uniform
distribution over all strings z ∈ FN

2 of weight wt(z) ∈ S, i.e.

λS(z) :=

{
1∑

j∈S (
N
j )

if wt(z) ∈ S,

0 otherwise.

The goal of this section will be to analyze the relationship between the decoding
of an error string ρ ∈ FN

2 and the collision probability of strings z ∈ FN
2 within

the map z 7→ Hz⊺. Intuitively, the more collisions there are within this mapping,
the harder it is for our decoder to correctly identify the error string ρ upon seeing
only its image Hρ⊺. However, certain error strings might be unlikely enough to
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occur that our decoder can safely ignore them. For example, if we are interested
in an ϵ-noisy error string ρ, then ρ is unlikely to have weight wt(ρ) far away from
ϵN . We could thus choose to ignore all strings whose weights do not lie in the set
S = [ϵN ± l] ∩ N, for some integer l. In order to analyze the collisions that occur
when strings are required to have weight wt(z) ∈ S, we define for every z ∈ FN

2 and
every S ⊆ {0, 1, . . . , N} the set of S-colliders of z, i.e. the set of strings y that lie
in the coset of z and have weight wt(y) ∈ S:

Definition 4.1. For any z ∈ FN
2 , any matrix H with N columns and entries in F2,

and any subset S ⊆ {0, 1, . . . , N}, define

ΩS,H
z :=

{
y ∈ FN

2 : wt(y) ∈ S and Hy⊺ = Hz⊺
}
.

When H is clear from context, we will drop the superscript and write ΩS
z .

This definition captures a natural parameter for how large of a list we need before
we can confidently claim that it contains the error string: if we are given Hρ⊺ and
are told that with high probability the error string ρ has weight wt(ρ) ∈ S, then
we should output the list ΩS

ρ . For unique decoding we want to argue that |ΩS
ρ | = 1

with high probability, whereas for list decoding we want to argue that |ΩS
ρ | ≤ k

with high probability, for some integer k > 1. The expectation of |ΩS
ρ | will thus be

a key quantity in our analysis. We will call this expectation the ”collision count.”

Definition 4.2. For any subset S ⊆ {0, 1, . . . , N} and any matrix H with N
columns and entries in F2, define

CollH(S) := E
z∼λS

[
|ΩS

z |
]
.

When the set S only contains one or two elements (i.e. S = {w} or S = {w,w′}),
we will abuse notation and write CollH(w) and CollH(w,w′) to mean CollH({w})
and CollH({w,w′}) respectively. In the following lemma, we use Markov’s inequality
to bound the probability of a list decoding error in terms of CollH(S).

Lemma 4.3. For any subset S ⊆ {0, 1, . . . , N}, any matrix H with N columns and
entries in F2, and any integer k ≥ 1, we have

Pr
ρ∼λS

[
|ΩS

ρ | > k
]
≤ CollH(S)− 1

k
.

Proof. Note that |ΩS
z | ≥ 1 for any z ∈ FN

2 with weight wt(z) ∈ S, so the random
variable |ΩS

ρ |−1 is always non-negative. Applying Markov’s inequality (i.e. Lemma
3.10), we then have

Pr
ρ∼λS

[
|ΩS

ρ | > k
]
= Pr

ρ∼λS

[
|ΩS

ρ | − 1 ≥ k
]

≤ CollH(S)− 1

k
.

When the error string ρ is sampled uniformly at random from the set {z ∈ FN
2 :

wt(z) ∈ S}, the above lemma allows us to relate the decoding error probability
to the collision count CollH(S). The problem we are most interested in, however,
is when ρ is sampled not from some uniform distribution, but from the ϵ-noisy
probability distribution Pϵ. We will now show how to connect these two decoding
problems. The intuition is that by the Chernoff bound, we only need to concern
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ourselves with strings whose weights lie in S = [ϵN ± l]∩N, for some appropriately
chosen l. But in this weight band all strings have similar weight, and so are given
similar probability under the distribution Pϵ. Intuitively, the Pϵ-decoder must then
perform very similarly to the λS-decoder. The following proposition makes this
idea precise, and then uses Lemma 4.3 to bound the probability of a decoding
error. Recall that Dk : Ft

2 → (FN
2 )⊗k is the max-likelihood decoder

Dk(x) := argmin
{z1,z2...,zk}⊆FN

2

Hz⊺
i =x⊺ for all i

{wt(z1) + wt(z2) + . . .+wt(zk)},

where ties are broken according to the lexicographic order.

Proposition 4.4. Let H be any matrix with N columns and entries in F2. Consider
any noise parameter ϵ ∈ (0, 1

2 ) and any l ∈ [1,min{ϵN, ( 12 − ϵ)N}]. Then

(i) We have the following unique-decoding bound.

Pr
ρ∼Pϵ

[ρ /∈ D1(Hρ⊺)] ≤ 2e−
l2

3ϵN + 4(l + 1) max
S⊆[ϵN±l]∩N

1≤|S|≤2

{
CollH(S)− 1

}
.

(ii) Consider some integer k > 1 satisfying k
2l+1 ∈ N. Then we have the following

list-decoding bound for list size k.

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
l2

3ϵN +
4(l + 1)

k
max

w∈[ϵN±l]∩N

{
CollH(w)− 1

}
.

Proof. We will consider the unique decoding case (k = 1) and the list-decoding case
(k > 1) separately.
Case 1: Unique decoding, i.e. k = 1
Let t be the number of rows in the matrix H. We will show that a slightly less
performant decoder D̃1 : Ft

2 → FN
2 satisfies the desired probability bound. We

define D̃1 as follows: upon receiving input x ∈ Ft
2, D̃1 outputs the minimum-weight

string from the set
{
z ∈ FN

2 : Hz⊺ = x⊺,wt(z) ∈ [ϵN ± l] ∩N
}
. If this set is empty,

the decoder fails. If there are multiple minimal-weight strings in the set, the decoder
outputs the first one in the lexicographic order. It is clear that

Pr
ρ∼Pϵ

[ρ ̸= D1(Hρ⊺)] ≤ Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)],

since D1 always returns the most likely string whereas D̃1 may not. We thus turn
to proving the desired bound for D̃1. We first bound the probability that the error
string wt(ρ) be far away from its mean. Letting

B = {z ∈ FN
2 :

∣∣wt(z)− ϵN
∣∣ ≤ l},

we have by Chernoff’s bound (i.e. Lemma 3.11) that

Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)] ≤ Pr
ρ∼Pϵ

[ρ /∈ B] + Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)
∣∣ρ ∈ B]

≤ 2e−
l2

3ϵN + Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)
∣∣ρ ∈ B]. (7)

We want to bound the second term. For any ρ ∈ B, we define the set of ”problematic
weights” S(ρ) := {⌈ϵN − l⌉, ⌈ϵN − l⌉+ 1, . . . ,wt(ρ)} . We note that for ρ ∈ B, our

decoder D̃1 can only fail if there is some string z ̸= ρ satisfying Hz⊺ = Hρ⊺ and
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wt(z) ∈ S(ρ). Recalling the definition ΩS
ρ := {z : Hz⊺ = Hρ⊺,wt(z) ∈ S}, we can

then rewrite our equation (7) as

Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)] ≤ 2e−
l2

3ϵN + Pr
ρ∼Pϵ

[
|ΩS(ρ)

ρ | > 1
∣∣ρ ∈ B

]
.

Considering the most problematic weight level w within the region [ϵN ± l]∩N and
using a union bound over all lower levels w′ ≤ w, we get

Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)] ≤ 2e−
l2

3ϵN + max
w∈[ϵN±l]∩N

{
Pr

ρ∼Pϵ

[
|ΩS(ρ)

ρ | > 1
∣∣wt(ρ) = w

]}
≤ 2e−

l2

3ϵN

+ (2l + 1) max
w,w′∈[ϵN±l]∩N

w′≤w

{
Pr

ρ∼Pϵ

[
|Ω{w,w′}

ρ | > 1
∣∣wt(ρ) = w

]}
.

We now note that under the condition wt(ρ) = w, the ϵ-noisy probability distribu-
tion Pϵ(ρ) and the uniform probability distribution λ{w,w′}(ρ) are identical (they
are both uniform on strings of weight w). We can thus rewrite our last inequality
as

Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)] ≤ 2e−
l2

3ϵN

+ (2l + 1) max
w,w′∈[ϵN±l]∩N

w′≤w

{
Pr

ρ∼λ{w,w′}

[
|Ω{w,w′}

ρ | > 1
∣∣wt(ρ) = w

]}
.

But by basic conditional probability we know that

Pr
ρ∼λ{w,w′}

[
|Ω{w,w′}

ρ | > 1
]
≥ Pr

ρ∼λ{w,w′}

[
wt(ρ) = w

]
Pr

ρ∼λ{w,w′}

[
|Ω{w,w′}

ρ | > 1
∣∣wt(ρ) = w

]
,

so we can bound our previous expression by

Pr
ρ∼Pϵ

[ρ ̸= D̃1(Hρ⊺)] ≤ 2e−
l2

3ϵN

+ (2l + 1) max
w,w′∈[ϵN±l]∩N

w′≤w

Prρ∼λ{w,w′}

[
|Ω{w,w′}

ρ | > 1
]

Prρ∼λ{w,w′}

[
wt(ρ) = w

]
 .

(8)

Now, from our theorem’s assumption on l, we know that any w,w′ ∈ [ϵN ± l] ∩ N
must lie in the interval [0, N

2 ]. Combining this with the fact that w′ ≤ w, we have

Pr
ρ∼λ{w,w′}

[
wt(ρ) = w

]
=

(
N
w

)(
N

{w,w′}
) ≥

(
N
w

)(
N
w

)
+

(
N
w′

) ≥ 1

2
. (9)

We note that the inequality above holds for both the case w ̸= w′ and the case
w = w′. (When w = w′, we have

(
N

{w,w′}
)
=

(
N
w

)
≤

(
N
w

)
+

(
N
w′

)
). It then follows

from (8) and (9) that

Pr
ρ∼Pϵ

[
ρ /∈ D̃1(Hρ⊺)

]
≤ 2e−

l2

3ϵN + 2(2l + 1) · max
S⊆[ϵN±l]∩N
|S|∈{1,2}

{
Pr

ρ∼λS

[
|ΩS

ρ | > 1
]}

.

The theorem statement then follows from Lemma 4.3.



A CRITERION FOR DECODING ON THE BSC 19

Case 2: List decoding, i.e. k > 1
Let t be the number of rows in the matrix H. We will show that a slightly less
performant decoding function Dk,l : Ft

2 → (FN
2 )⊗k satisfies the desired probability

bound. We define Dk,l as follows: upon receiving input x ∈ Ft
2, Dk,l outputs

k
2l+1

strings from {z ∈ FN
2 : Hz = x,wt(z) = w}, for each w ∈ [ϵN ± l] ∩ N. If there are

fewer than k
2l+1 strings in some level w, the decoder returns all of them. If there

are more than k
2l+1 strings in some level w, the decoder returns the first k

2l+1 ones
in lexicographic order. It is clear that for any l we have

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ Pr
ρ∼Pϵ

[ρ /∈ Dk,l(Hρ⊺)],

since Dk returns the k most likely strings while Dk,l returns at most k strings. We
thus turn to proving the desired bound for Dk,l. Letting

B =
{
z ∈ FN

2 :
∣∣wt(z)− ϵN

∣∣ ≤ l
}
,

we have by Chernoff’s bound (i.e. Lemma 3.11) that

Pr
ρ∼Pϵ

[ρ /∈ Dk,l(Hρ⊺)] ≤ Pr
ρ∼Pϵ

[ρ /∈ B] + Pr
ρ∼Pϵ

[ρ /∈ Dk,l(Hρ⊺)
∣∣ρ ∈ B]

≤ 2e−
l2

3ϵN + max
w∈[ϵN±l]∩N

{
Pr

ρ∼Pϵ

[ρ /∈ Dk,l(Hρ⊺)
∣∣wt(ρ) = w]

}
.

Since the distribution Pϵ gives the same probability to any two strings of equal
weights, we get

Pr
ρ∼Pϵ

[ρ /∈ Dk,l(Hρ⊺)] ≤ 2e−
l2

3ϵN + max
w∈[ϵN±l]∩N

{
Pr

ρ∼λ{w}
[ρ /∈ Dk,l(Hρ⊺)]

}
≤ 2e−

l2

3ϵN + max
w∈[ϵN±l]∩N

{
Pr

ρ∼λ{w}

[
|Ω{w}

ρ | > k

2l + 1

]}
.

Applying Lemma 4.3, we get

Pr
ρ∼Pϵ

[ρ /∈ Dk,l(Hρ⊺)] ≤ 2e−
l2

3ϵN +
2l + 1

k
· max
w∈[ϵN±l]∩N

{
CollH(w)− 1

}
.

5. A criterion for decoding. In this section, we give a criterion that certifies
that a linear code C ⊆ FN

2 is resilient to errors of probability ϵ. We give such a
criterion for both unique decoding and list decoding. The function we will need to
make this connection is the Krawtchouk polynomial of degree s, which is defined as

Ks(x) :=

s∑
j=0

(−1)j
(
x

j

)(
N − x

s− j

)
,

where for any polynomial p(x) we defined
(
p(x)
j

)
:= p(x)(p(x)−1)...(p(x)−j+1)

j! . For

vectors v ∈ FN
2 , we will abuse notation and write Ks(v) to mean Ks(wt(v)). For

convenience, we also define for any S ⊆ {0, 1, . . . , N} the function

KS(x) :=
∑
s∈S

Ks(x).

In the following proposition, we use basic Fourier analysis tools to rewrite the
collision count CollH(S) in terms of the Krawtchouk polynomial KS . We note
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that Proposition 5.1 was previously proven in a different form in [9] (see Theorem
2.1 and Lemma 4.1), and can be seen as describing the coset weight distribution of
the code. Recall that we use µt to denote the uniform distribution over all vectors
in Ft

2, and that we use the notation
(
N
S

)
:=

∑
s∈S

(
N
s

)
.

Proposition 5.1. Fix ϵ ∈ (0, 1
2 ), and let H be a t ×N matrix with entries in F2.

Then for any S ⊆ {0, 1, . . . , N}, we have

CollH(S) =
1(
N
S

) E
v∼µt

[KS(vH)2].

Proof. The main tool we will use is Parseval’s Identity, which relates the evaluations

f(x) of a function f : Ft
2 → R to its Fourier coefficients f̂(y) by

1

2t

∑
x∈Ft

2

f(x)2 =
∑
y∈Ft

2

f̂(y)2. (10)

We will first need to rewrite CollH(S) as the ℓ2 norm of some function f . For this,
we recall the definition ΩS

z :=
{
y ∈ FN

2 : wt(y) ∈ S and Hy⊺ = Hz⊺
}
and note that

CollH(S) :=
1(
N
S

) ∑
z∈FN

2 :wt(z)∈S

|ΩS
z |

=

(
N

S

) ∑
z∈FN

2 :wt(z)∈S

1

|ΩS
z |

Pr
a∼λS

[Ha⊺ = Hz⊺]2

=

(
N

S

) ∑
x∈Ft

2

Pr
z∼λS

[Hz⊺ = x⊺]2.

We are now ready to apply Parseval’s Identity. Letting f(x) = Prz∼λS
[Hz⊺ = x⊺]

in equation (10), we get

CollH(S) =

(
N

S

) ∑
x∈Ft

2

f(x)2

= 2t
(
N

S

) ∑
y∈Ft

2

f̂(y)2.

But by definition of the Fourier transform, we have

f̂(y) := 2−t
∑
x∈Ft

2

1(
N
S

) ∣∣{z ∈ FN
2 : wt(z) ∈ S and Hz⊺ = x⊺}

∣∣ · (−1)y·x
⊺

,

so our previous equation can be rewritten as

CollH(S)

= 2t
(
N

S

) ∑
y∈Ft

2

(
2−t

∑
x∈Ft

2

1(
N
S

) (−1)y·x
⊺

·
∣∣{z ∈ FN

2 : wt(z) ∈ S and Hz⊺ = x⊺}
∣∣)2

= 2−t 1(
N
S

) ∑
y∈Ft

2

( ∑
z∈FN

2

wt(z)∈S

(−1)y·Hz⊺
)2

. (11)
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We now note that by definition, for any non-negative integer s ≤ N we have

Ks(yH) :=

s∑
j=0

(−1)j
(
wt(yH)

j

)(
N − wt(yH)

s− j

)
=

∑
z∈FN

2

wt(z)=s

(−1)yH·z⊺

,

where we used the convention that
(
a
b

)
= 0 when a < b. Combining this with

equation (11), we get

CollH(S) =
2−t(
N
S

) ∑
y∈Ft

2

KS(yH)2.

We will now combine Propositions 4.4 and 5.1 to obtain Theorem 1.2, i.e. to
obtain a bound on the decoding error probability in terms of Krawtchouk polyno-
mials. We prove a generalized version of Theorem 1.2 below. To recover Theorem
1.2, set the list size k = 1 and set l = N3/4, and apply Lemma 2.1. (You want to

think of the parameter l as being l >>
√
N in both the case k = 1 and the case

k > 1, so that the error term e−
l2

3ϵN is small).

Theorem 5.2. Let H be any t×N matrix with entries in F2. Consider any noise
parameter ϵ ∈ (0, 1

2 ) and any l ∈ [1,min{ϵN, ( 12 − ϵ)N}]. Then

(i) We have the following unique-decoding bound.

Pr
ρ∼Pϵ

[ρ /∈ D1(Hρ⊺)] ≤ 2e−
l2

3ϵN + 4(l + 1) max
S⊆[ϵN±l]∩N

1≤|S|≤2

{ 1(
N
S

) E
v∼µt

[
KS(vH)2

]
− 1

}
.

(ii) Consider some integer k > 1 satisfying k
2l+1 ∈ N. Then we have the following

list-decoding bound for list size k.

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
l2

3ϵN +
4(l + 1)

k
max

w∈[ϵN±l]∩N

{ 1(
N
w

) E
v∼µt

[
Kw(vH)2

]
− 1

}
.

Proof. The theorem statement follows directly from Propositions 4.4 and 5.1.

One consequence of Theorem 5.2 is Corollary 1.3, which states that C is resilient
to ϵ-errors if the weight distribution of C⊥ is close enough to the binomial distri-
bution (see Appendix B for the proof). As another application of Theorem 5.2,
we present the following bound on the probability of making a list-decoding error
for a code C. We note that once again, our bound depends only on the weight
distribution of the dual code C⊥.

Proposition 5.3. Fix any ϵ ∈ (0, 1
2 ), and define β :=

1−2
√

ϵ̃(1−ϵ̃)

2 for ϵ̃ = ϵ+ 1√
logN

.

Let B = [βN, (1−β)N ]∩N, and let k∗ = (2⌊ N√
logN

⌋+1)m for some integer m > 0.

Then for any integer N > 2
1

ϵ2(1−ϵ)2
+1

and all list sizes k ≥ k∗, we have that any
t×N matrix H with entries in F2 satisfies

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
N

4ϵ log N +
N

k∗
max
j∈B

{
Pr

v∼µt

[wt(vH) = j] · 2N(
N
j

) − 1

}
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+
2
h(ϵ)N+5h( 1√

log N
)N

k∗
max
j /∈B

{
Pr

v∼µt

[
wt(vH) = j

]
· 22ϵN log |1− 2j

N |
}
.

Proof. We will use Theorem 5.2 to bound the decoding error probability in terms of
the Krawtchouk polynomials KS(j) and the probability factors Prv∼µt

[
wt(vH) =

j
]
. Some of these terms will then be bounded using Proposition 1.7, and some will

be bounded using Theorem 1.9. We proceed with the proof; applying Theorem 5.2
to the list size k∗ with parameter l = ⌊ N√

logN
⌋, we get

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ Pr
ρ∼Pϵ

[ρ /∈ Dk∗(Hρ⊺)]

≤ 2e−
N

4ϵ log N

+
N

k∗
max

w∈[ϵN± N√
log N

]∩N

{ 1(
N
w

) N∑
j=0

Pr
v∼µt

[
wt(vH) = j

]
Kw(j)

2 − 1
}
.

(12)

We want to bound the summation in the second term. We will start with the
central terms j ∈ B. For these we rely on Proposition 1.7, which states that
2−N

(Nw)

∑N
j=0

(
N
j

)
·Kw(j)

2 = 1 for all w ∈ {0, 1, . . . , N}. For any w ∈ {0, 1, . . . , N}, we
thus get

1(
N
w

) ∑
j∈B

Pr
v∼µt

[
wt(vH) = j

]
Kw(j)

2

≤ 1(
N
w

) max
j∈B

{
Pr

v∼µt

[wt(vH) = j] · 1(
N
j

)}∑
j∈B

(
N

j

)
·Kw(j)

2

≤ 2N max
j∈B

{
Pr

v∼µt

[wt(vH) = j] · 1(
N
j

)} . (13)

We then want to bound the contribution of the faraway terms j /∈ B to the sum-
mation in (12), i.e. we want to bound

max
w∈[ϵN± N√

log N
]∩N

{ 1(
N
w

) ∑
j /∈B

Pr
v∼µt

[
wt(vH) = j

]
Kw(j)

2
}
. ( ∗ )

Bounding this quantity by N times its maximum value over j and applying Theorem
1.9, we get

( ∗ ) ≤ N(
N

⌈ϵN− N√
log N

⌉
) max

w∈[ϵN± N√
log N

]∩N
j /∈B

{
Pr

v∼µt

[
wt(vH) = j

]
Kw(j)

2
}

≤ N(
N

⌈ϵN− N√
log N

⌉
) max

w∈[ϵN± N√
log N

]∩N
j /∈B

{
Pr

v∼µt

[
wt(vH) = j

]
· 22h( w

N )N+2w log |1− 2j
N |

}
.

But by Lemma 3.8 and subadditivity of entropy (i.e. Lemma 3.7), we know that(
N

⌈ϵN − N√
logN

⌉

)
≥ 1√

2N
2
h(ϵ− 1√

log N
)N ≥ 1√

2N
2
h(ϵ)N−h( 1√

log N
)N

.
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Additionally, for any w ∈ {ϵN± N√
logN

} we have (again by subadditivity of entropy,

i.e. Lemma 3.7)

2h(
w

N
)N ≤ 2h(ϵ+

1√
logN

)N ≤ 2h(ϵ)N + 2h(
1√

logN
)N.

Finally, for any w ∈ {ϵN ± N√
logN

} and any j /∈ B, we have 2w log |1 − 2j
N | ≤

2ϵN log |1 − 2j
N | − 2 N√

logN
log |1 − 2β| ≤ 2ϵN log |1 − 2j

N | + h( 1√
logN

)N , where the

last inequality follows from our assumption that N > 2
1

ϵ2(1−ϵ)2
+1

. Overall, we then
get

( ∗ ) ≤
√
2N

3
2 · 24h(

1√
log N

)N · 2h(ϵ)N max
j /∈B

{
Pr

v∼µt

[
wt(vH) = j

]
· 22ϵN log |1− 2j

N |
}

≤ 1

N
· 25h(

1√
log N

)N · 2h(ϵ)N max
j /∈B

{
Pr

v∼µt

[
wt(vH) = j

]
· 22ϵN log |1− 2j

N |
}
,

where the last line follows from our assumption that N > 217 > 50 and the fact that
for all N > 50, we have log(

√
2N

5
2 ) ≤ 3 logN ≤ N√

logN
≤ h( 1√

logN
)N. Combining

this bound for the faraway terms with our bound (13) for the central terms of the
summation, we bound the right-hand side of equation (12) by

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
N

4ϵ log N +
N

k∗
max
j∈B

{
Pr

v∼µt

[wt(vH) = j] · 2N(
N
j

) − 1

}

+
2
h(ϵ)N+5h( 1√

log N
)N

k∗
max
j /∈B

{
Pr

v∼µt

[
wt(vH) = j

]
· 22ϵN log |1− 2j

N |
}
.

6. The weight distribution of transitive linear codes. We will now prove
Theorem 1.1. We note that the bound we get is essentially tight, since for any finite
field Fq and any integer divider j of N , the repetition code

C =
{
(z, z, . . . , z) ∈ FN

q : z ∈ Fj
q

}
is transitive, has dimension j, and has weight distribution

Pr
c∼D(C)

[
wt(c) = αN

]
= q−j ·

(
j

(1− α)j

)
(q − 1)αj

≥ q−j ·
√

1

2j
· 2h(α)j · qαj logq(q−1)

=

√
1

2j
· q−(1−hq(α))j

for all α ∈ (0, 1) such that αj ∈ N. We recall and prove our Theorem 1.1 below:

Theorem 1.1. Consider any finite field Fq, and let C ⊆ FN
q be any transitive linear

code. Then for any α ∈ (0, 1), we have

Pr
c∼D(C)

[
wt(c) = αN

]
≤ q−(1−hq(α))dim C ,

where D(C) is the uniform distribution over all codewords in C, wt(c) is the number
of non-zero coordinates of c, and hq is the q-ary entropy

hq(α) := (1− α) logq
1

1− α
+ α logq

q − 1

α
.
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Proof. Let r = dim C, and let M the r × N generator matrix of C. Without loss
of generality, suppose that the first r columns of M span the column-space of M .
Define

C(α) := {c ∈ C : wt(c) = αN},
and let Z = (Z1, Z2, . . . , ZN ) be a uniformly random codeword in C(α). Now C
is transitive, so for every j, k ∈ {1, 2, . . . , N} the random variables Zj and Zk are

identically distributed. By linearity of expectation and by definition of C(α), we
thus have that for every j ∈ {1, 2, . . . , N},

Pr
Z∼D(C(α))

[Zj = 0] = 1− α. (14)

Now for any nonzero a, b ∈ Fq, there must be as many codewords c ∈ Cα with
cj = a as there are codewords c′ ∈ Cα with c′j = b (because C is a linear subspace,

so the mapping c 7→ ba−1 · c maps codewords to codewords). The entropy of Zj can
thus be expressed as

H
Z∼D(C(α))

(Zj) = (1− α) log
1

1− α
+ (q − 1) · α

q − 1
log

q − 1

α

= hq(α) log(q). (15)

We will now show that H(Zj |Z1, Z2, . . . , Zj−1) = 0 for every j > r. To this end, fix
some j > r. Recall that the columns {M1,M2, . . . ,Mr} span the column-space of
M , so we can write the column Mj as Mj =

∑r
k=1 βkMk for some β1, β2 . . . , βr ∈ F.

But any codeword c ∈ C can be expressed as v(c)M for some v(c) ∈ Fr, so any
codeword c ∈ C satisfies

cj = v(c)Mj =

r∑
k=1

βkv
(c)Mk =

r∑
k=1

βkck.

The random variable Zj is thus determined by {Z1, Z2, . . . , Zr}, and so we indeed
have

H
Z∼D(C(α))

(Zj |Z1, Z2, . . . , Zj−1) = 0

for every j > r. Applying (15) and the chain rule for entropy then gives

H(Z) = H(Z1) +

N∑
i=2

H(Zi|Z1, Z2, . . . , Zi−1)

≤
r∑

i=1

H(Zi)

≤ r · hq(α) log(q)

Now Z is sampled uniformly from C(α), so H(Z) = log
(
|C(α)|

)
. We thus have

Pr
c∼D(C)

[
wt(c) = αN

]
=

∣∣C(α)
∣∣

qr

= 2H(Z) · q−r

≤ q−(1−hq(α))·r.
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7. List decoding for transitive codes. We now turn to proving Theorem 1.5.
In section 5, we bounded the minimum size for the decoding list of a linear code in
terms of the weight distribution of its dual code. But as we stated in Claim 3.3,
the dual code of a transitive code is also transitive. For any transitive linear code
C, we can thus apply our Theorem 1.1 for the weight distribution of C⊥ to get a
bound on the size of the decoding list for C. We restate and prove our Theorem
1.5 below.

Theorem 1.5. Fix any ϵ ∈ (0, 1
2 ) and η ∈ (0, 1). Then any transitive linear code

C ⊆ FN
2 of dimension dim C = ηN can with high probability list-decode ϵ-errors

using a list T of size

|T | = 2ϵN log( 2
1−η )+o(N) + 24ϵN+o(N).

Proof. We will show that for all N > 2
1

ϵ2(1−ϵ)2
+1

, there exists a function T mapping
every x ∈ FN

2 to a subset T (x) ⊆ C of size

|T (x)| = e
N

4ϵ log N · 25h(
1√

log N
)N · (24ϵηN + 2ϵN log( 2

1−η )),

with the property that for every codeword c ∈ C we have

Pr
ρ∼Pϵ

[
c /∈ T (c+ ρ)

]
≤ 4e−

N
4ϵ log N .

Let H denote the parity-check matrix of C. By Lemma 2.1, it is sufficient to show
that for any list size k > N , we have

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
N

4ϵ log N +
2
5h( 1√

log N
)N+1

k
· (24ϵηN + 2ϵN log( 2

1−η )). (16)

Setting the list size k = e
N

4ϵ log N ·25h(
1√

log N
)N · (24ϵηN +2ϵN log( 2

1−η )) in equation (16)
will then recover our theorem statement. We thus turn to proving (16). We note
that 2⌊ N√

logN
⌋+1 < k

2 , so there exists some k∗ ∈ [k2 , k] satisfying the conditions of

Proposition 5.3. Proposition 5.3 then yields the following bound on the left-hand
side of (16):

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
N

4ϵ log N +
2N

k
max
j∈B

{
Pr

v∼µt

[wt(vH) = j] · 2N(
N
j

)}

+
2
h(ϵ)N+5h( 1√

log N
)N+1

k
max
j /∈B

{
Pr

v∼µt

[
wt(vH) = j

]
22ϵN log |1− 2j

N |
}
,

(17)

where β := 1
2

(
1− 2

√
ϵ̃(1− ϵ̃)

)
for ϵ̃ := ϵ + 1√

logN
, and B := [βN, (1 − β)N ] ∩ N.

Our goal will be to bound both the central terms j ∈ B and the faraway terms j /∈ B
by using our bounds on the weight distribution of transitive codes. As we’ve seen
in section 3, the dual code C⊥ is a transitive linear code of dimension N − dim C.
By Theorem 1.1, we thus have that for all j ∈ {0, 1, . . . , N},

Pr
v∼µt

[
wt(vH) = j

]
≤ 2−(1−h( j

N ))(1−η)N . (18)

For any j ∈ B, we then have by Lemma 3.8 that

Pr
v∼µt

[
wt(vH) = j

]
· 2N(

N
j

) ≤ 2−(1−h(j/N))(1−η)N · 2N√
1

2N · 2h(j/N)N
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=
√
2N · 2(1−h(j/N))ηN .

But for j ∈ B we have β ≤ j
N ≤ 1 − β, so the right-hand side is maximized at

j = ⌈βN⌉. Applying Lemma 3.9, we get

max
j∈B

{
Pr

v∼µt

[
wt(vH) = j

]
· 2N(

N
j

)} ≤
√
2N · 2(1−h(β))ηN

≤
√
2N · 24ϵ̃(1−ϵ̃)ηN . (19)

We now turn to the faraway terms of equation (17). By equation (18), we have

max
j /∈B

{
Pr

v∼µt

[wt(vH) = j] · 22ϵN log |1− 2j
N |

}
≤ max

δ<β

{
2−(1−h(δ))(1−η)N · 22ϵN log(1−2δ)

}
.

Note that by definition of β, any δ ∈ (0, β) can be written as δ =
1−2

√
αϵ̃(1−ϵ̃)

2 for
some α > 1. By Lemma 3.9, we can then rewrite our previous expression as

max
j /∈B

{
Pr

v∼µt

[wt(vH) = j]22ϵN log |1− 2j
N |

}
≤ max

α>1

{
2−

2αϵ̃(1−ϵ̃)
ln 2 (1−η)N2ϵN log(4αϵ̃(1−ϵ̃))

}
.

But for any positive constant c, the derivative of log(α) − cα is 1
α·ln 2 − c, and

the second derivative is always negative. Thus, the above expression achieves its
maximum when α = ϵ

2ϵ̃(1−ϵ̃)(1−η) . We then get

max
j /∈B

{
Pr

v∼µt

[wt(vH) = j] · 22ϵN log |1− 2j
N |

}
≤ 2−

ϵN
ln 2 · 2ϵN log( 2ϵ

1−η )

≤ 2−h(ϵ)N · 2ϵN log( 2
1−η ), (20)

where in the last line we used the inequality log(1−x) ≥ − x
(1−x) ln 2 for x < 1 to get

h(ϵ) ≤ −ϵ log(ϵ) + ϵ
ln 2 . We now use equations (19) and (20) to bound the central

and faraway terms of (17) respectively. This gives

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
N

4ϵ log N +
2N

k
·
√
2N · 24ϵ̃(1−ϵ̃)ηN

+
2
5h( 1√

log N
)N+1

k
· 2ϵN log( 2

1−η )

≤ 2e−
N

4ϵ log N +
2
5h( 1√

log N
)N+1

k
· (24ϵηN + 2ϵN log( 2

1−η )).

We have shown (16), and so we are done.

8. List decoding for doubly transitive codes. We will now turn to proving
our list-decoding bounds for doubly transitive codes. We restate and prove our
Theorem 1.4 below.

Theorem 1.4. Fix any ϵ ∈ (0, 1
2 ) and any γ ≤ 1 − log(1 + 2−4ϵ) . Then any

doubly transitive linear code C ⊆ FN
2 of dimension dim C = (1 − γ)N can with

high probability list-decode ϵ-errors using a list T of size

|T | = 2h(ϵ)N−γN+o(N).

Proof. We will show that for all N > 2
1

ϵ2(1−ϵ)2
+1

, there exists a function T mapping
every x ∈ FN

2 to a subset T (x) ⊆ C of size

|T (x)| = 2h(ϵ)N−γN+o(N),
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with the property that for every codeword c ∈ C we have

Pr
ρ∼Pϵ

[
c /∈ T (c+ ρ)

]
≤ 3e−

N
4ϵ log N .

Let H denote the parity-check matrix of C. By Lemma 2.1, it is sufficient to show

that for any N > 2
1

ϵ2(1−ϵ)2
+1

and any list size k > N , we have

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
N

4ϵ log N +
a

k
· 2h(ϵ)N−γN (21)

for some a = 2o(N). Setting the list size k = a · e
N

4ϵ log N · 2h(ϵ)N−γN in equation (21)
will then recover our theorem statement. We thus turn to proving (21). We note
that 2⌊ N√

logN
⌋+ 1 < k

2 , so there exists some k∗ ∈ [k2 , k] satisfying the conditions of

Proposition 5.3. Proposition 5.3 then yields the following bound on the left-hand
side of (21).

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
N

4ϵ log N +
2N

k
max
j∈B

{
Pr

v∼µt

[wt(vH) = j] · 2N(
N
j

)}

+
2
h(ϵ)N+5h( 1√

log N
)N+1

k
max
j /∈B

{
Pr

v∼µt

[
wt(vH) = j

]
22ϵN log |1− 2j

N |
}
,

(22)

where β := 1
2

(
1− 2

√
ϵ̃(1− ϵ̃)

)
for ϵ̃ := ϵ + 1√

logN
, and B := [βN, (1 − β)N ] ∩ N.

Our goal will be to bound both the central terms j ∈ B and the faraway terms
j /∈ B by using Samorodnitsky’s weight distribution bound for doubly transitive
codes. Now by Claim 3.4, the dual code of a doubly transitive code is itself doubly
transitive. Applying Theorem 1.6, we thus get that for all j ∈ {0, 1, . . . , N},

Pr
v∼µt

[
wt(vH) = j

]
≤ 2−γN+o(N) ·

(
1

21−γ − 1

)min{j,N−j}

. (23)

It then follows that

max
j∈B

{
Pr

v∼µt

[
wt(vH) = j

]
· 2N(

N
j

)} ≤ max
α∈[β, 12 ]

{
2−γN−αN log(21−γ−1)+N−h(α)N+o(N)

}
.

(24)

We want to bound the expression on the right-hand side by 2h(ϵ)N−γN+o(N). For
this we define the function

f(α) := −γN − αN log(21−γ − 1) +N − h(α)N

and compute its derivative

df

dα
= −N log(21−γ − 1)−N log

1− α

α
.

We note that over the interval [0, 1], the second derivative d2f
dα2 = N

α(1−α) ln 2 is

positive. Thus over [0, 1], the function f is minimized at the point α∗ satisfying
1−α∗

α∗ = 21−γ − 1 (i.e. α∗ = 1 − 2γ−1), and f is monotone on either side of α∗.

In particular, over the interval [β, 1
2 ] the function f must be maximized at either

α = β or α = 1
2 . But since γ ≤ 1 − log(1 + 2−4ϵ) by our theorem assumption, we

have

f
(1
2

)
≤ −γN + 2ϵN
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≤ −γN + h(ϵ)N. (25)

On the other hand we have β =
1−

√
4ϵ(1−ϵ)

2 − o(1) , so in order to show that

f(β) ≤ h(ϵ)N − γN + o(N), (26)

it suffices to show that

−
1−

√
4ϵ(1− ϵ)

2
log(21−γ − 1) + 1− h

(1−√
4ϵ(1− ϵ)

2

)
− h(ϵ) ≤ 0.

But the left-hand is an increasing function of γ, so by our theorem assumption that
γ ≤ 1− log(1 + 2−4ϵ), it suffices to show that

2ϵ(1−
√
4ϵ(1− ϵ)) + 1− h

(1−√
4ϵ(1− ϵ)

2

)
− h(ϵ) ≤ 0. (27)

We postpone the proof of this fact to Appendix D.5. Assuming this fact we get
equation (26), which when combined with (25) and (24) gives us

max
j∈B

{
Pr

v∼µt

[
wt(vH) = j

]
· 2N(

N
j

)} ≤ 2h(ϵ)N−γN+o(N). (28)

This finishes our analysis of the central terms of equation (22). For the faraway
terms, by (23) we have

max
j /∈B

{
Pr

v∼µt

[wt(vH) = j] · 22ϵN log |1− 2j
N |

}
≤ max

j≤N
2

{
2−γN+o(N)

(
1

21−γ − 1

)j

· 22ϵN log(1− 2j
N )

}
= 2−γN+o(N) max

j≤N
2

{
2−j log(21−γ−1)+2ϵN log(1− 2j

N )
}
. (29)

Now the function

g(j) := −j log(21−γ − 1) + 2ϵN log(1− 2j

N
)

has first derivative
dg

dj
= − log(21−γ − 1)− 4ϵ

ln 2 · (1− 2j
N )

,

and second derivative
dg2

d2j
= − 8ϵ

ln 2 ·N(1− 2j
N )2

< 0.

Thus g(j) achieves its maximum at j∗ = N
2 + 2ϵN

ln 2 log(21−γ−1) and is decreasing over

[j∗, N
2 ]. Whenever 1−γ ≥ log(1+2−

4ϵ
ln 2 ), we have j∗ ≤ 0; in that case the argument

in equation (29) is maximized at j = 0 and we get

max
j /∈B

{
Pr

v∼µt

[wt(vH) = j] · 22ϵN log |1− 2j
N |

}
≤ 2−γN+o(N).

We now combine this bound for the faraway terms with the bound (28) for the cen-

tral terms to bound the right-hand side of (22). We get that for all N > 2
1

ϵ2(1−ϵ)2
+1

,
we have

Pr
ρ∼Pϵ

[ρ /∈ Dk(Hρ⊺)] ≤ 2e−
N

4ϵ log N +
2o(N)

k
· 2h(ϵ)N−γN .
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We have shown (21), so we are done.

Acknowledgments. We thank Alexander Barg, Paul Beame, Noam Elkies, Jan
Hazla, Amir Shpilka, Madhu Sudan and Amir Yehudayoff for useful discussions.

Appendix A. Weight bounds comparisons. In this section, we compare our
Theorem 1.1 with previously known bounds on the weight distribution of Reed-
Muller codes. We will denote by RMq(n, d) the Reed-Muller code over Fq with n
variables and degree d. The codewords of RMq(n, d) are the evaluation vectors (over
all points in Fn

q ) of all multivariate polynomials of degree ≤ d in n variables. Let

Mq(n, d) denote the set of monomials m =
∏n

i=1 x
di
i satisfying

1. di < q for every i ∈ {1, 2, . . . , n}
2.

∑n
i=1 di ≤ d.

Then the dimension of the corresponding Reed-Muller code is

dim RMq(n, d) = |Mq(n, d)|. (30)

We note that when q = 2, we have

|M2(n, d)| =
(

n

≤ d

)
.

Throughout this section, we will denote by Dq(n, d) the uniform distribution over
all codewords in RMq(n, d), and by wt(c) the number of non-zero coordinates of c.
When q = 2, we will simply write RM(n, d) and D(n, d) to mean RM2(n, d) and
D2(n, d). The following result is an immediate consequence of our Theorem 1.1.

Theorem A.1. Consider any finite field Fq. For any non-negative integers n, d ≤
n, and any α ∈ (0, 1), the Reed-Muller code RMq(n, d) satisfies

Pr
c∼Dq(n,d)

[
wt(c) = αN

]
≤ q−(1−hq(α))|Mq(n,d)|.

Proof. This follows immediately from Theorem 1.1, Fact 3.6, and equation (30).

Reed-Muller codes over non-prime fields
To the best of our knowledge, our Theorem A.1 is the first weight bound for Reed-
Muller codes over non-prime fields.
Reed-Muller codes over odd prime fields
For Reed-Muller codes over odd prime fields, the only preexisting weight bound we
are aware of is the following result of [10]:

Theorem A.2 (Corollary 1.2 in [10]). For any 0 < δ < 1
2 , there are constants

c1, c2 > 0 such that for any odd prime q and for any integers d, n such that d ≤ δn,
we have

Pr
c∼Dq(n,d)

[wt(c)
N

≤ 1− 1

q
− q−c1

n
d

]
≤ q−c2|Mq(n,d)|.

This was a generalization of [11], who proved the same result for Reed-Muller
codes over F2. Theorem A.2 is very strong for small degrees, but gets weaker as the
degree increases. When d is linear in n we have q−c1

n
d = Θ(1), meaning that in this

regime Theorem A.2 can only give a nontrivial bound on relative weights wt(c)
N that

are at least a constant away from 1− 1
q . Our Theorem A.1 gives nontrivial bounds

for all relative weights and all degrees.
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Reed-Muller codes over F2

We now turn to Reed-Muller codes over F2, for which more results are known. The
same bound as Theorem A.2 was proven over F2 by [11]. For comparison with our
Theorem A.1, see the discussion above.

In the constant-rate regime (i.e. d = n
2 ± O(

√
n)), the strongest known weight

bound (for all weights) is due to Samorodnitsky. It follows immediately from The-
orem 1.6, i.e. from Proposition 1.4 in [48].

Theorem A.3 (follows from Proposition 1.4 in [48]). For any α ∈ (0, 1), define
α∗ := min{α, 1−α}. Then for any non-negative integers n, d ≤ n and any α ∈ (0, 1),
the Reed-Muller code RM(n, d) satisfies

Pr
c∼D(n,d)

[
wt(c) = αN

]
≤ 2−(

n
≤d)+o(N)

(
21−

( n
≤d)
N − 1

)−α∗N

.

Moreover, if α∗ ≥ 1− 2
( n
≤d)
N −1,

Pr
c∼D(n,d)

[
wt(c) = αN

]
≤ 2o(N) ·

(
N
αN

)
2N

.

When the rate of the code is subconstant (i.e. when the degree is away from
n
2 ), Theorem A.3 does not give strong bounds. An approach that has been fairly
successful in this regime is the line of work of [33, 4, 51]. To our knowledge, the
strongest results for these regimes are due to [51]. We start with their bound for
lower weights, i.e. for weights in [0, N

4 ].

Theorem A.4 (Theorem 1.1 in [51]). For any j, n, d ∈ N with d ≤ n, we have

Pr
c∼D(n,d)

[wt(c) ≤ 2−jN ] ≤ 2
−
(
1−17( j

1− d
n

+
2− d

n

(1− d
n

)2
)( d

n )j−1
)
( n
≤d)+O(n4)

.

We claim that for every d > n
34 , there is some weight threshold Ad < 1

4 for which
our Theorem A.1 is stronger than Theorem A.4 for all weights larger than AdN .
One way to see this is to note that our Theorem A.1 satisfies

Pr[wt(c) ≤ 2−j · 2n] ≤ 2−
(
1−h(2−j)

)
( n
≤d)

≤ 2−(1−2j·2−j)( n
≤d),

while the expression in Theorem A.4 satisfies

2
−
(
1−17( j

1− d
n

+
2− d

n

(1− d
n

)2
)( d

n )j−1
)
( n
≤d) ≥ 2−

(
1−17j( d

n )j−1
)
( n
≤d).

Thus our Theorem A.1 is stronger than Theorem A.4 whenever

j · 2−(j−1) < 17j · ( d
n
)j−1. (31)

This condition is always satisfied when d ≥ n
2 , so in this range our Theorem A.1 is

stronger than Theorem A.4 for all weights. When d < n
2 , condition (31) is satisfied

whenever

j <
log 17

log n
2d

+ 1.

For any n
34 < d < n

2 , this gives a nontrivial range.
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This concludes our comparison of Theorem A.1 with Theorem A.4, which was the
bound of [51] for weights in [0, N

4 ]. We now turn to their bounds for larger weights.

Theorem A.5 (Theorem 1.3 in [51]). Let j, n ∈ N and let 0 < γ(n) < 1
2 −

Ω

(√
logn
n

)
be a parameter (which may be constant or depend on n) such that

j+log 1
1−2γ

(1−2γ)2 = o(n). Then

Pr
c∼D(n,γn)

[wt(c) ≤ 1− 2−j

2
N ] ≤ 2−2−c(γ,j)( n

≤d)+O(n4),

where c(γ, j) = O

(
γ2j+γ log 1

1−2γ

1−2γ + γ

)
.

This bound holds when the degree is smaller than n
2 . For arbitrary degree, [51]

gives the following:

Theorem A.6 (Theorem 1.5 in [51]). For any n, d ∈ N with d ≤ n and any δ > 0,
we have

Pr
c∼D(n,d)

[wt(c) ≤ 1− δ

2
N ] ≤ e−

δ2

2 ·2d .

We will start by comparing our Theorem A.1 with Theorem A.6. Applying Lemma
3.9, we get from Theorem A.1 that

Pr
c∼D(n,d)

[wt(c) ≤ 1− δ

2
N ] ≤ 2−(1−h( 1−δ

2 ))·( n
≤d)

≤ e−
δ2

2 ·( n
≤d).

Thus our Theorem A.1 is strictly stronger than Theorem A.6 for all d < n. We will
now compare our Theorem A.1 with Theorem A.5. Applying Lemma 3.9, we get
from Theorem A.1 that

Pr
c∼D(n,d)

[wt(c) ≤ 1− 2−j

2
N ] ≤ 2−(1−h( 1−2−j

2 ))·( n
≤d)

≤ 2−
2−2j

2 ln 2 ·( n
≤d).

It follows that our Theorem A.1 is stronger than Theorem A.5 whenever 2−(2j+1) ≥
2−c(γ,j), i.e. whenever

2j + 1 ≤ c(γ, j).

But c(γ, j) := O
(

γ2

1−2γ · j + γ log 1
1−2γ

1−2γ + γ
)
, and γ2

1−2γ → ∞ as γ → 1/2. Thus

there exists some constant γ∗ ∈ (0, 1
2 ) such that our Theorem A.1 is stronger than

Theorem A.5 whenever d > γ∗n. In private correspondence with Amir Shpilka and
Ori Sberlo, we learned that γ∗ can be computed to be γ∗ ≈ 0.38.

Appendix B. Proof of corollary 1.3. Recall that for any ϵ ∈ (0, 1) we defined

Aϵ := {αN ∈ N : h(α) > 1− h(ϵ)−N−1/5},

and that for any code C we denote by D(C⊥) the uniform distribution over the
dual code C⊥. We now restate and prove our Corollary 1.3.
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Corollary 1.3. Let ϵ ∈ (0, 1
2 ) be arbitrary, and let C ⊆ FN

2 be a linear code.
Suppose that for every j ∈ Aϵ we have

Pr
y∼D(C⊥)

[
wt(y) = j

]
≤

(
1 + o(N−1)

)(Nj )
2N

,

and suppose that

Pr
y∼D(C⊥)

[
wt(y) /∈ Aϵ

]
≤ 2N

3
4 ·

∑
i/∈Aϵ

(
N
i

)
2N

.

Then C is resilient to ϵ-errors.

Proof. From Theorem 1.2, we know that whenever N > 1
ϵ4( 1

2−ϵ)4
, there exists some

decoder d : FN
2 → C such that for all c ∈ C,

Pr
ρ∼Pϵ

[d(c+ ρ) ̸= c] ≤ 2e−
√

N
3ϵ

+N max
S⊆[ϵN±N3/4]∩N

1≤|S|≤2

{ 1(
N
S

) N∑
j=0

Pr
y∼C⊥

[
wt(y) = j

]
KS(j)

2 − 1
}
.

(32)

Let ν ∈ (0, 1
2 ) be such that h(ν) = 1− h(ϵ)−N−1/5, and note that we have

Aϵ = {⌈νN⌉, ⌈νN⌉+ 1, . . . , ⌊(1− ν)N⌋}.
We will start by bounding the central terms j ∈ Aϵ in equation (32). Applying
Proposition 1.7 and the first condition in our theorem statement, we immediately
get that for any S ⊆ {0, 1, . . . , N},

1(
N
S

) ∑
j∈Aϵ

Pr
y∼C⊥

[
wt(y) = j

]
KS(j)

2 ≤ 1 + o
( 1

N

)
. (33)

We now turn to the faraway terms j /∈ Aϵ. For these, we note that for any non-
negative integers j, s ≤ N we have

|Ks(j)| =

∣∣∣∣∣
s∑

t=0

(−1)t
(
j

t

)(
N − j

s− t

)∣∣∣∣∣
≤

s∑
t=0

(
j

t

)(
N − j

s− t

)
=

(
N

s

)
,

where we used the convention that
(
a
b

)
= 0 when a < b. For any S ⊆ {0, 1, . . . , N},

we can then bound the faraway terms j /∈ Aϵ of equation (32) by

1(
N
S

) ∑
j /∈Aϵ

Pr
y∼C⊥

[
wt(y) = j

]
KS(j)

2 ≤
(
N

S

)
Pr

y∼C⊥

[
wt(y) /∈ Aϵ

]
.

Applying the second condition in our theorem statement in combination with Lemma
3.8 and the subadditivity of entropy (Lemma 3.7), we get

max
S⊆[ϵN±N3/4]∩N

1≤|S|≤2

{ 1(
N
S

) ∑
j /∈Aϵ

Pr
y∼C⊥

[
wt(y) = j

]
KS(j)

2
}
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≤ 2

(
N

⌊ϵN +N3/4⌋

)
· 2 · 2−h(ϵ)N−N4/5+N3/4

≤ 4 · 2h(ϵ)N+h(N−1/4)N · 2−h(ϵ)N−N4/5+N3/4

≤ o(
1

N
).

Combining this bound for the faraway terms with our bound (33) for the central
terms, we bound equation (32) by

Pr
ρ∼Pϵ

[d(c+ ρ) ̸= c)] ≤ 2e−
√

N
3ϵ +N · o

( 1

N

)
≤ o(1).

Appendix C. Lower bounds on list decoding. In this section, we prove the
result mentioned in equation (1), section 1.

Claim C.1. Let ϵ ∈ (0, 1
2 ) be arbitrary, and consider any N > 100

ϵ2 . Suppose a code

C ⊆ FN
2 and a decoder dk : FN

2 → C⊗k satisfy

Pr
ρ∼Pϵ

c∼D(C)

[c ∈ dk(c+ ρ)] ≥ 3

4
,

for Pϵ the ϵ-noisy distribution and D(C) the uniform distribution on C. Then we
must have

k ≥ |C| · 2−(1−h(ϵ))N · 2
−h(ϵ)N3/4

8
.

Proof. We will first show that in order for the decoder dk to succeed with high
probability, there must be many codewords c ∈ C for which

|{x ∈ FN
2 : c ∈ dk(x)}| ≳ 2h(ϵ)N .

Intuitively, this is because the sphere of radius ϵN around any codeword c contains
≈ 2h(ϵ)N points (and for any transmitted codeword c, with high probability the
received message m will satisfy wt(m+c) ≈ ϵN). We will then simply double-count
the number of pairs (x, c) for which c ∈ dk(x). On the one hand, there are 2N · k
such pairs, since every received message is mapped to k codewords; on the other
hand, there must be at least about |C| ·2h(ϵ)N pairs, since as we’ve just argued most
codewords in C need to be matched to at least ≈ 2h(ϵ)N points. It follows that we
must have

k ≳ |C| · 2
h(ϵ)N

2N
.

Formally, we first note that the theorem condition implies that at least |C|
2 code-

words c ∈ C must satisfy

Pr
ρ∼Pϵ

[c ∈ dk(c+ ρ)] ≥ 1

2
. (34)

Fix any such c. Now from Chernoff’s bound (i.e Lemma 3.11), we have for N > 100
ϵ2

that

Pr
ρ∼Pϵ

[
wt(ρ) ≤ ϵN − ϵN3/4

]
≤ 2e−

10
3

≤ 1

4
.
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In order for c to satisfy c ∈ dk(c + ρ) with probability at least 1
2 , there must then

be a subset Sc ⊆ {x ∈ FN
2 : wt(c+ x) ≥ ϵN − ϵN3/4} satisfying both

x ∈ Sc =⇒ c ∈ dk(x) (35)

and

Pr
ρ∼Pϵ

[
ρ ∈ Sc

]
≥ 1

4
. (36)

But every element x ∈ Sc satisfies wt(c+x) ≥ ϵN − ϵN3/4, so every x ∈ Sc satisfies

Pr
ρ∼Pϵ

[
ρ = c+ x

]
≤ ϵϵN−ϵN3/4

(1− ϵ)(1−ϵ)N+ϵN3/4

≤ 2−(1−N−1/4)h(ϵ)N (37)

Equations (36) and (37) imply that any c ∈ C that can be list-decoded by dk with

probability ≥ 1
2 must satisfy |Sc| ≥ 2(1−N−1/4)h(ϵ)N

4 . It then follows from (35) that
any such c must satisfy∣∣{x ∈ FN

2 : c ∈ dk(x)}
∣∣ ≥ 2(1−N−1/4)h(ϵ)N

4
.

By double counting, we get

2N · k =
∑
c∈C

∣∣{x ∈ FN
2 : c ∈ dk(x)}

∣∣
≥ |C|

2
· 2

(1−N−1/4)h(ϵ)N

4

=
|C|
8

· 2h(ϵ)N−h(ϵ)N3/4

.

The result then follows from rearranging terms.

Appendix D. Other proofs for sections 1, 3 and 2.

D.1. Explicit bounds from Theorem 1.5. In this section, we prove the result
we mentioned in equation (2).

Claim D.1. Fix any ϵ ∈ (0, 1
2 ) and N > 2

1
ϵ2(1−ϵ)2

+1
. Then any transitive linear

code C ⊆ FN
2 of dimension dim C = (1− 4ϵ

e )N can with high probability list-decode
ϵ-errors using a list T of size

|T | = 2(h(ϵ)−ϵ+ ϵ2

ln 2 )N+o(N) + 24ϵN+o(N).

Proof. From Theorem 1.5, we know that C can with high probability list-decode
ϵ-errors using a list T of size

|T | =2ϵN log( 2e
4ϵ )+o(N) + 24ϵN+o(N)

= 2ϵN log( 1
ϵ )+ϵN log e−ϵN+o(N) + 24ϵN+o(N)

= 2ϵN log( 1
ϵ )+(1−ϵ)N ϵ

ln 2−ϵN+ ϵ2

ln 2N+o(N) + 24ϵN+o(N)

≤ 2(h(ϵ)−ϵ+ ϵ2

ln 2 )N+o(N) + 24ϵN+o(N),

where in the last line we used the inequality log(1 − x) ≤ − x
ln 2 for all x to get

h(ϵ) ≥ ϵ log 1
ϵ + (1− ϵ) ϵ

ln 2 .
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D.2. Duals of transitive codes - proof of claims 3.3 and 3.4. We show that
the dual of a transitive code is itself transitive.

Claim 3.3. The dual code C⊥ of a transitive code C ⊆ FN
2 is transitive.

Proof. Let i, j ∈ [N ] be arbitrary. Since C is transitive, we know there exists a
permutation π : [N ] → [N ] such that π(j) = i and for any c = (c1, c2, . . . , cN ) ∈ C,
we have cπ := (cπ(1), cπ(2), . . . , cπ(N)) ∈ C . Clearly π−1 satisfies π−1(i) = j, and

we claim that it also satisfies that vπ−1 ∈ C⊥ for all v ∈ C⊥. For this we note that
since cπ ∈ C for every c ∈ C, we have by definition that every v ∈ C⊥ satisfies∑

k

vkcπ(k) = 0 for all c ∈ C.

We thus have

v ∈ C⊥ =⇒
∑
k

vkcπ(k) = 0 for all c ∈ C

=⇒
∑
k

vπ−1(k)ck = 0 for all c ∈ C

=⇒ vπ−1 ∈ C⊥.

Claim 3.4. The dual code C⊥ of a doubly transitive code C ⊆ FN
2 is doubly

transitive.

Proof. Let i, j, k, l ∈ [N ] be such that i ̸= k and j ̸= l. Since C is doubly transitive,
we know there exists a permutation π : [N ] → [N ] such that π(j) = i, π(l) = k,
and for any c = (c1, c2, . . . , cN ) ∈ C, we have cπ := (cπ(1), cπ(2), . . . , cπ(N)) ∈ C .

Clearly π−1 satisfies π−1(i) = j and π−1(k) = l, and we claim that it also satisfies
that vπ−1 ∈ C⊥ for all v ∈ C⊥. For this we note that since cπ ∈ C for every c ∈ C,
we have by definition that every v ∈ C⊥ satisfies

N∑
t=1

vtcπ(t) = 0 for all c ∈ C.

We thus have

v ∈ C⊥ =⇒
∑
t

vtcπ(t) = 0 for all c ∈ C

=⇒
∑
t

vπ−1(t)ct = 0 for all c ∈ C

=⇒ vπ−1 ∈ C⊥.

D.3. On known list-decoding bounds for doubly transitive codes. We recall
the known list-decoding bound for doubly transitive codes (see equation (5) in
section 1):

|T | = 2
ϵN log

4ϵ(1−ϵ)

(2γ−1)2
+o(N)

,

where 1 − γ ∈ (0, 1) is the rate of the code. We claim that for constant γ, this
bound never achieves the information-theoretic 2h(ϵ)N−γN+o(N).
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Claim D.2. For any ϵ ∈ (0, 1
2 ) and any γ ∈ (0, 1), we have

ϵ log
4ϵ(1− ϵ)

(2γ − 1)2
> h(ϵ)− γ.

Proof. Since 2x < 1 + x for all x ∈ (0, 1), it will be sufficient to show that

ϵ log
4ϵ(1− ϵ)

γ2
≥ h(ϵ)− γ.

We will thus show that for any ϵ ∈ (0, 1
2 ) and any c = γ

ϵ < 1
ϵ , we have

ϵ log
4ϵ(1− ϵ)

(cϵ)2
≥ h(ϵ)− cϵ,

i.e. that

f(ϵ, c) := log(1− ϵ) + 2ϵ− 2ϵ log c+ cϵ ≥ 0. (38)

We first fix some ϵ ∈ (0, 1
2 ) and compute the c minimizing f(ϵ, c). Note that

∂

∂c
f(ϵ, c) = − 2ϵ

c ln 2
+ ϵ

and

∂2

∂c2
f(ϵ, c) =

2ϵ

c2 ln 2
> 0,

so f(ϵ, c) is minimized at c = 2
ln 2 and decreasing over c ∈ [0, 2

ln 2 ]. We thus have

min
c≤ 1

ϵ

f(ϵ, c) =

{
f(ϵ, 2

ln 2 ) if ϵ ≤ ln 2
2 ,

f(ϵ, 1
ϵ ) otherwise.

(39)

We deal with each case separately. For the case ϵ ≤ ln 2
2 , we want to show that

f(ϵ,
2

ln 2
) = log(1− ϵ) + 2ϵ log(ln 2) +

2ϵ

ln 2
≥ 0.

The first derivative is

∂

∂ϵ
f(ϵ,

2

ln 2
) = − 1

(1− ϵ) ln 2
+ 2 log(ln 2) +

2

ln 2
,

and the second derivative is

∂2

∂ϵ2
f(ϵ,

2

ln 2
) = − 1

(1− ϵ)2 ln 2
< 0.

Thus the function f(ϵ, 2
ln 2 ) is maximized at ϵ∗ = 1 − 1

(2 log(ln 2)+ 2
ln 2 ) ln 2

≈ 0.21,

and monotone on each side of ϵ∗. In particular, we know that over the interval
[0, ln 2

2 ] the function f(ϵ, 2
ln 2 ) achieves its minimum at either ϵ = 0 or ϵ = ln 2

2 . But

f(0, 2
ln 2 ) = 0 < f( ln 2

2 , 2
ln 2 ), so we indeed have that

f(ϵ,
2

ln 2
) ≥ 0

for all 0 ≤ ϵ ≤ ln 2
2 . This deals with the first case of (39). For the second case of

(39), we want to show that for all ϵ ∈ (0, 1
2 ) we have

f(ϵ,
1

ϵ
) = log(1− ϵ) + 2ϵ+ 2ϵ log ϵ+ 1 ≥ 0.
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But

∂

∂ϵ
f(ϵ,

1

ϵ
) = − 1

(1− ϵ) ln 2
+ 2− 2 log(

1

ϵ
) +

2

ln 2

is maximized at ϵ = 1
2 , since

∂2

∂ϵ2 f(ϵ,
1
ϵ ) =

1
ln 2 (

2
ϵ −

1
(1−ϵ)2 ) and 2(1− ϵ)2 ≥ 1

2 ≥ ϵ for

ϵ ∈ (0, 1
2 ). It then follows that for ϵ ∈ (0, 1

2 ), we have

∂

∂ϵ
f(ϵ,

1

ϵ
) ≤ − 1

(1− 1
2 ) ln 2

+ 2− 2 log(2) +
2

ln 2

= 0,

and so the function f(ϵ, 1
ϵ ) is decreasing in ϵ. Since f( 12 , 2) = 0, we indeed have

f(ϵ, 1
ϵ ) ≥ 0 for all ϵ ∈ (0, 1

2 ).

D.4. A version of Pinsker’s inequality - Proof of Lemma 3.9.

Lemma 3.9. For any µ ∈ (0, 1), we have

1− h

(
1− µ

2

)
=

1

2 ln 2

∞∑
i=1

µ2i

i(2i− 1)
,

and thus
µ2

2 ln 2
≤ 1− h

(
1− µ

2

)
≤ µ2.

Proof.

1− h(
1− µ

2
) = 1 +

1− µ

2
log

(
1− µ

2

)
+

1 + µ

2
log

(
1 + µ

2

)
=

1− µ

2
log (1− µ) +

1 + µ

2
log (1 + µ)

=
1

2 ln 2

[
−(1− µ)

∞∑
i=1

µi

i
− (1 + µ)

∞∑
i=1

(−1)i
µi

i

]

=
1

2 ln 2

[
2µ

∞∑
i=1

µ2i−1

2i− 1
− 2

∞∑
i=1

µ2i

2i

]

=
1

ln 2

∞∑
i=1

µ2i

(
1

2i− 1
− 1

2i

)

=
1

2 ln 2

∞∑
i=1

µ2i

i(2i− 1)

Thus 1 − h( 1−µ
2 ) ≥ µ2

2 ln 2 and 1 − h( 1−µ
2 ) ≤ 1

2 ln 2

∑∞
i=1

µ2

i(2i−1) = 1
2 ln 2 · 2 ln 2 · µ2 =

µ2.

D.5. Proof of (27).

Claim D.3. For any ϵ ∈ [0, 1
2 ], we have

h
(1−√

4ϵ(1− ϵ)

2

)
+ h(ϵ) ≥ 1 + 2ϵ(1−

√
4ϵ(1− ϵ)).
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Proof. Writing the Taylor expansion of h as in the proof of Lemma 3.9, we have

h
(1−√

4ϵ(1− ϵ)

2

)
+ h(ϵ) = 2− 1

2 ln 2

∞∑
i=1

(4ϵ(1− ϵ))i + (1− 2ϵ)2i

i(2i− 1)
.

But
∑∞

i=1
1

i(2i−1) = 2 ln 2, so our previous expression can be rewritten as

h
(1−√

4ϵ(1− ϵ)

2

)
+ h(ϵ) = 1 +

1

2 ln 2

∞∑
i=1

1− (4ϵ(1− ϵ))i − (1− 4ϵ(1− ϵ))i

i(2i− 1)

≥ 1 +
1

2 ln 2

∞∑
i=2

1− (4ϵ(1− ϵ))2 − (1− 4ϵ(1− ϵ))2

i(2i− 1)
,

where in the second line we used the fact that the term i = 1 in the summation is
0. We will now need the following inequality:

1− (4ϵ(1− ϵ))2 − (1− 4ϵ(1− ϵ))2 ≥
4 ln 2 · ϵ(1−

√
4ϵ(1− ϵ))

2 ln 2− 1
. (40)

Once we establish (40), our claim follows from bounding our previous inequality by

h
(1−√

4ϵ(1− ϵ)

2

)
+ h(ϵ) ≥ 1 +

1

2 ln 2
·
4 ln 2 · ϵ(1−

√
4ϵ(1− ϵ))

2 ln 2− 1

∞∑
i=2

1

i(2i− 1)

= 1 +
2ϵ(1−

√
4ϵ(1− ϵ))

2 ln 2− 1

( ∞∑
i=1

1

i(2i− 1)
− 1

)
= 1 + 2ϵ(1−

√
4ϵ(1− ϵ))

It thus only remains to prove (40). For this, we note that the right-hand side of
(40) can be bounded by

4 ln 2 · ϵ(1−
√
4ϵ(1− ϵ))

2 ln 2− 1
≤ 8ϵ(1−

√
4ϵ(1− ϵ)),

while the left-hand side of (40) expands to

1− (4ϵ(1− ϵ))2 − (1− 4ϵ(1− ϵ))2 = 8ϵ− 40ϵ2 + 64ϵ3 − 32ϵ4.

Thus it is sufficient to show that

5ϵ− 8ϵ2 + 4ϵ3 ≤
√
4ϵ(1− ϵ),

or equivalently (squaring both sides and dividing by ϵ) that the function

g(ϵ) := 16ϵ5 − 64ϵ4 + 104ϵ3 − 80ϵ2 + 29ϵ− 4

satisfies

g(ϵ) ≤ 0 (41)

for all ϵ ∈ [0, 1
2 ]. But the derivative of g is

dg

dϵ
= 80ϵ4 − 256ϵ3 + 312ϵ2 − 160ϵ+ 29

= (1− 2ϵ)2(20ϵ2 − 44ϵ+ 29),
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and the polynomial 20ϵ2 − 44ϵ+29 has the two complex roots 11±2
√
6·i

10 . Thus over

the interval [0, 1
2 ], the function g(ϵ) must be maximized at either ϵ = 0 or ϵ = 1

2 .

Since g(0) = −4 and g( 12 ) = 0, we have

g(ϵ) ≤ 0

for all ϵ ∈ [0, 1
2 ]. We have thus shown (41), and we are done.
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